Tackling Data Heterogeneity in Federated Learning via Loss Decomposition
- URL: http://arxiv.org/abs/2408.12300v2
- Date: Mon, 30 Sep 2024 09:21:17 GMT
- Title: Tackling Data Heterogeneity in Federated Learning via Loss Decomposition
- Authors: Shuang Zeng, Pengxin Guo, Shuai Wang, Jianbo Wang, Yuyin Zhou, Liangqiong Qu,
- Abstract summary: We analyze how Federated Learning (FL) training influence FL performance by decomposing the global loss into three terms: local loss, distribution shift loss and aggregation loss.
We propose a novel FL method based on global loss decomposition, called FedLD, to jointly reduce these three loss terms.
Our strategies achieve better and more robust performance on retinal and chest X-ray classification compared to other FL algorithms.
- Score: 19.755512688738506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a rising approach towards collaborative and privacy-preserving machine learning where large-scale medical datasets remain localized to each client. However, the issue of data heterogeneity among clients often compels local models to diverge, leading to suboptimal global models. To mitigate the impact of data heterogeneity on FL performance, we start with analyzing how FL training influence FL performance by decomposing the global loss into three terms: local loss, distribution shift loss and aggregation loss. Remarkably, our loss decomposition reveals that existing local training-based FL methods attempt to reduce the distribution shift loss, while the global aggregation-based FL methods propose better aggregation strategies to reduce the aggregation loss. Nevertheless, a comprehensive joint effort to minimize all three terms is currently limited in the literature, leading to subpar performance when dealing with data heterogeneity challenges. To fill this gap, we propose a novel FL method based on global loss decomposition, called FedLD, to jointly reduce these three loss terms. Our FedLD involves a margin control regularization in local training to reduce the distribution shift loss, and a principal gradient-based server aggregation strategy to reduce the aggregation loss. Notably, under different levels of data heterogeneity, our strategies achieve better and more robust performance on retinal and chest X-ray classification compared to other FL algorithms. Our code is available at https://github.com/Zeng-Shuang/FedLD.
Related papers
- Collaboratively Learning Federated Models from Noisy Decentralized Data [21.3209961590772]
Federated learning (FL) has emerged as a prominent method for collaboratively training machine learning models using local data from edge devices.
We focus on addressing the problem of noisy data in the input space, an under-explored area compared to the label noise.
We propose a noise-aware FL aggregation method, namely Federated Noise-Sifting (FedNS), which can be used as a plug-in approach in conjunction with widely used FL strategies.
arXiv Detail & Related papers (2024-09-03T18:00:51Z) - FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation [15.298650496155508]
Federated Learning (FL) enables model development by leveraging data distributed across numerous edge devices without transferring local data to a central server.
Existing FL methods face challenges when dealing with scarce and label-skewed data across devices, resulting in local model overfitting and drift.
We propose a pioneering framework called FLea, incorporating the following key components.
arXiv Detail & Related papers (2024-06-13T19:28:08Z) - Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization [81.32266996009575]
In federated learning (FL), the multi-step update and data heterogeneity among clients often lead to a loss landscape with sharper minima.
We propose FedLESAM, a novel algorithm that locally estimates the direction of global perturbation on client side.
arXiv Detail & Related papers (2024-05-29T08:46:21Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Generalized Federated Learning via Sharpness Aware Minimization [22.294290071999736]
We propose a general, effective algorithm, textttFedSAM, based on Sharpness Aware Minimization (SAM) local, and develop a momentum FL algorithm to bridge local and global models.
Empirically, our proposed algorithms substantially outperform existing FL studies and significantly decrease the learning deviation.
arXiv Detail & Related papers (2022-06-06T13:54:41Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.