論文の概要: Multimodal Foundational Models for Unsupervised 3D General Obstacle Detection
- arxiv url: http://arxiv.org/abs/2408.12322v1
- Date: Thu, 22 Aug 2024 11:57:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 14:03:43.057473
- Title: Multimodal Foundational Models for Unsupervised 3D General Obstacle Detection
- Title(参考訳): 教師なし3次元障害物検出のためのマルチモーダル基礎モデル
- Authors: Tamás Matuszka, Péter Hajas, Dávid Szeghy,
- Abstract要約: 本稿では,マルチモーダル基礎モデルに基づく障害物セグメンテーションと,従来の教師なし幾何に基づく外乱検出の組み合わせを提案する。
このアプローチはオフラインで動作し、非因果性を活用することができ、トレーニング不要の手法を利用する。
これにより、高価な再トレーニングを必要とせずに、3Dで一般的な障害物を検出することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current autonomous driving perception models primarily rely on supervised learning with predefined categories. However, these models struggle to detect general obstacles not included in the fixed category set due to their variability and numerous edge cases. To address this issue, we propose a combination of multimodal foundational model-based obstacle segmentation with traditional unsupervised computational geometry-based outlier detection. Our approach operates offline, allowing us to leverage non-causality, and utilizes training-free methods. This enables the detection of general obstacles in 3D without the need for expensive retraining. To overcome the limitations of publicly available obstacle detection datasets, we collected and annotated our dataset, which includes various obstacles even in distant regions.
- Abstract(参考訳): 現在の自律運転知覚モデルは、主に事前に定義されたカテゴリによる教師付き学習に依存している。
しかし、これらのモデルは、それらの変動性と多くのエッジケースにより、固定されたカテゴリセットに含まれない一般的な障害を検出するのに苦労する。
この問題に対処するために,マルチモーダル基礎モデルに基づく障害物分割と従来の教師なし幾何に基づく外乱検出の組み合わせを提案する。
このアプローチはオフラインで動作し、非因果性を活用することができ、トレーニング不要の手法を利用する。
これにより、高価な再トレーニングを必要とせずに、3Dで一般的な障害物を検出することができる。
公開されている障害物検出データセットの限界を克服するため,遠隔地においてもさまざまな障害を含むデータセットを収集,注釈付けした。
関連論文リスト
- One for All: Multi-Domain Joint Training for Point Cloud Based 3D Object Detection [71.78795573911512]
textbfOneDet3Dは、異なるドメイン間での3D検出に対処する汎用的なワン・ツー・オール・モデルである。
本稿では、データ干渉問題に対処するため、ルーティング機構によって誘導される散乱とコンテキストにおけるドメイン認識を提案する。
完全なスパース構造とアンカーフリーヘッドは、さらに大きなスケールの差のある点雲を収容する。
論文 参考訳(メタデータ) (2024-11-03T14:21:56Z) - Unified Domain Generalization and Adaptation for Multi-View 3D Object Detection [14.837853049121687]
マルチビューカメラを利用した3次元物体検出は, 視覚課題における実用的, 経済的価値を実証した。
典型的な教師付き学習アプローチは、目に見えない、ラベルなしのターゲットデータセットに対する満足な適応を達成する上で、課題に直面します。
本稿では、これらの欠点を軽減するための実践的なソリューションとして、統一ドメイン一般化・適応(UDGA)を提案する。
論文 参考訳(メタデータ) (2024-10-29T18:51:49Z) - Sequential Neural Barriers for Scalable Dynamic Obstacle Avoidance [7.375976854181687]
SNCBF(Sequential Neural Control Barrier Model)の合成学習法を提案する。
複数の動的障害物の空間的相互作用パターンを分解し,各障害物の状態列を通じて予測することができる。
提案手法の利点は,既存の手法と比較して動的衝突回避を改善することである。
論文 参考訳(メタデータ) (2023-07-06T14:24:17Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
本稿では,対象物の潜在的可算有界箱の多様性として,ラベルの不確実性問題を定式化する。
本稿では,条件付き変分オートエンコーダを応用した生成フレームワークであるGLENetを提案する。
GLENetが生成するラベルの不確実性はプラグアンドプレイモジュールであり、既存のディープ3D検出器に便利に統合することができる。
論文 参考訳(メタデータ) (2022-07-06T06:26:17Z) - See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised
Multi-Target Domain Adaptation [7.489722641968593]
本稿では,ライダー間における最先端3D検出器の性能伝達のための,教師なしマルチターゲットドメイン適応フレームワークであるSEEを提案する。
提案手法は,検出ネットワークに渡す前に,基礎となる形状を補間し,異なるライダーからの物体の走査パターンを正規化する。
我々は、SEEが公開データセット上で有効であること、最先端の成果を達成できること、そして、我々のフレームワークの産業的応用を証明するために、新しい高解像度ライダーに定量的な結果を提供することを実証する。
論文 参考訳(メタデータ) (2021-11-17T23:46:47Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z) - Seismic horizon detection with neural networks [62.997667081978825]
本稿では,複数の実地震立方体上での地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
本研究の主な貢献は,複数実地震立方体における地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
論文 参考訳(メタデータ) (2020-01-10T11:30:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。