論文の概要: Head Anchor Enhanced Detection and Association for Crowded Pedestrian Tracking
- arxiv url: http://arxiv.org/abs/2508.05514v1
- Date: Thu, 07 Aug 2025 15:47:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.939615
- Title: Head Anchor Enhanced Detection and Association for Crowded Pedestrian Tracking
- Title(参考訳): 群集歩行者追跡のための頭部アンカーの強化と関連性
- Authors: Zewei Wu, César Teixeira, Wei Ke, Zhang Xiong,
- Abstract要約: 提案手法は,物体検出器の回帰と分類の両方から検出特徴を取り入れたものである。
動きモデリングの観点で、現代の検出器仮定に適合するように設計された反復カルマンフィルタリング手法を提案する。
- 参考スコア(独自算出の注目度): 8.653608112604472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual pedestrian tracking represents a promising research field, with extensive applications in intelligent surveillance, behavior analysis, and human-computer interaction. However, real-world applications face significant occlusion challenges. When multiple pedestrians interact or overlap, the loss of target features severely compromises the tracker's ability to maintain stable trajectories. Traditional tracking methods, which typically rely on full-body bounding box features extracted from {Re-ID} models and linear constant-velocity motion assumptions, often struggle in severe occlusion scenarios. To address these limitations, this work proposes an enhanced tracking framework that leverages richer feature representations and a more robust motion model. Specifically, the proposed method incorporates detection features from both the regression and classification branches of an object detector, embedding spatial and positional information directly into the feature representations. To further mitigate occlusion challenges, a head keypoint detection model is introduced, as the head is less prone to occlusion compared to the full body. In terms of motion modeling, we propose an iterative Kalman filtering approach designed to align with modern detector assumptions, integrating 3D priors to better complete motion trajectories in complex scenes. By combining these advancements in appearance and motion modeling, the proposed method offers a more robust solution for multi-object tracking in crowded environments where occlusions are prevalent.
- Abstract(参考訳): 視覚的歩行者追跡は有望な研究分野であり、インテリジェントな監視、行動分析、人間とコンピュータの相互作用に広く応用されている。
しかし、現実世界のアプリケーションは、重大な排他的課題に直面している。
複数の歩行者が相互作用したり重なり合うと、目標特徴の喪失がトラッカーの安定した軌道を維持する能力を著しく損なう。
従来の追跡手法は、通常、 {Re-ID} モデルから抽出されたフルボディのバウンディングボックス機能と線形定速度運動仮定に依存し、しばしば厳しい閉塞シナリオで苦労する。
これらの制約に対処するために、よりリッチな特徴表現とより堅牢なモーションモデルを活用する拡張された追跡フレームワークを提案する。
具体的には、オブジェクト検出器の回帰と分類の両方から検出特徴を取り入れ、空間情報と位置情報を特徴表現に直接埋め込む。
さらに閉塞を緩和するため、頭部が全身に比べて閉塞しにくいため、ヘッドキーポイント検出モデルを導入する。
動きモデリングの分野では, 複雑なシーンにおいて, 3次元前兆をより完全な動き軌跡に組み込むことにより, 現代的な検出仮定に整合した反復カルマンフィルタ手法を提案する。
これらの外観と動きのモデリングの進歩を組み合わせることで、オクルージョンが普及している混在環境において、より堅牢なマルチオブジェクト追跡ソリューションを提供する。
関連論文リスト
- DINO-CoDT: Multi-class Collaborative Detection and Tracking with Vision Foundation Models [11.34839442803445]
道路利用者を対象とした多クラス協調検出・追跡フレームワークを提案する。
まず,大域的空間注意融合(GSAF)モジュールを用いた検出器を提案する。
次に,視覚基盤モデルを用いた視覚的セマンティクスを活用し,IDSW(ID SWitch)エラーを効果的に低減するトラックレットRe-IDentification(REID)モジュールを提案する。
論文 参考訳(メタデータ) (2025-06-09T02:49:10Z) - Street Gaussians without 3D Object Tracker [86.62329193275916]
既存の方法は、標準空間における動的オブジェクトを再構築するために、オブジェクトポーズの労働集約的な手動ラベリングに依存している。
本研究では,3次元オブジェクト融合戦略における2次元ディープトラッカーの関連性を利用して,安定なオブジェクト追跡モジュールを提案する。
我々は、軌道誤差を自律的に補正し、見逃した検出を回復する暗黙の特徴空間に、モーションラーニング戦略を導入することで、避けられないトラッキングエラーに対処する。
論文 参考訳(メタデータ) (2024-12-07T05:49:42Z) - 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT)は、自律運転やロボットセンシングのようなインテリジェントなシステムに不可欠である。
本稿では,学習可能なカルマンフィルタを移動モジュールに導入するGRUベースのMOT法を提案する。
このアプローチは、データ駆動学習を通じてオブジェクトの動き特性を学習することができ、手動モデル設計やモデルエラーを回避することができる。
論文 参考訳(メタデータ) (2024-11-13T08:34:07Z) - LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry [52.131996528655094]
本稿では,LEAP(Long-term Effective Any Point Tracking)モジュールについて述べる。
LEAPは、動的トラック推定のために、視覚的、トラック間、時間的キューと慎重に選択されたアンカーを革新的に組み合わせている。
これらの特徴に基づき,強靭な視力計測システムLEAP-VOを開発した。
論文 参考訳(メタデータ) (2024-01-03T18:57:27Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
軌道予測は、自律運転やロボット工学などの応用における歩行者運動を理解する上で重要な役割を担っている。
現在の軌道予測モデルは、視覚的モダリティからの長い、完全な、正確に観察されたシーケンスに依存する。
本稿では,物体の障害物や視界外を,完全に視認できる軌跡を持つものと同等に扱う新しいアプローチであるLTrajDiffを提案する。
論文 参考訳(メタデータ) (2023-10-09T20:32:49Z) - Iterative Scale-Up ExpansionIoU and Deep Features Association for
Multi-Object Tracking in Sports [26.33239898091364]
本稿では,スポーツシナリオに対するDeep ExpansionIoU (Deep-EIoU) という,オンラインかつ堅牢な多対象追跡手法を提案する。
従来の手法とは異なり、カルマンフィルタの使用を放棄し、スポーツシナリオにおける拡張IoUの反復的なスケールアップと深い特徴を活用して、ロバストなトラッキングを行う。
提案手法は,SportsMOTデータセットで77.2%,SportsNet-Trackingデータセットで85.4%を達成し,不規則な動き物体の追跡に顕著な効果を示した。
論文 参考訳(メタデータ) (2023-06-22T17:47:08Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
提案手法は,2次元検出器と3次元検出器のみを用いて,ロバストなトラッキングを実現する。
多くの最先端のTBDベースのマルチモーダルトラッキング手法よりも正確であることが証明されている。
論文 参考訳(メタデータ) (2023-04-18T02:45:18Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。