Relaxed Rotational Equivariance via $G$-Biases in Vision
- URL: http://arxiv.org/abs/2408.12454v2
- Date: Sun, 25 Aug 2024 05:18:26 GMT
- Title: Relaxed Rotational Equivariance via $G$-Biases in Vision
- Authors: Zhiqiang Wu, Licheng Sun, Yingjie Liu, Jian Yang, Hanlin Dong, Shing-Ho J. Lin, Xuan Tang, Jinpeng Mi, Bo Jin, Xian Wei,
- Abstract summary: Group Equivariant Convolution (GConv) can effectively handle rotational symmetry data.
Real-world data rarely conforms to strict rotational symmetry commonly referred to as Rotational Symmetry-Breaking.
We propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called the $G$-Biases.
- Score: 19.814324876189772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group Equivariant Convolution (GConv) can effectively handle rotational symmetry data. They assume uniform and strict rotational symmetry across all features, as the transformations under the specific group. However, real-world data rarely conforms to strict rotational symmetry commonly referred to as Rotational Symmetry-Breaking in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called the $G$-Biases under the group order to break strict group constraints and achieve \textbf{R}elaxed \textbf{R}otational \textbf{E}quivarant \textbf{Conv}olution (RREConv). We conduct extensive experiments to validate Relaxed Rotational Equivariance on rotational symmetry groups $\mathcal{C}_n$ (e.g. $\mathcal{C}_2$, $\mathcal{C}_4$, and $\mathcal{C}_6$ groups). Further experiments demonstrate that our proposed RREConv-based methods achieve excellent performance, compared to existing GConv-based methods in classification and detection tasks on natural image datasets.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - SBDet: A Symmetry-Breaking Object Detector via Relaxed Rotation-Equivariance [26.05910177212846]
Group Equivariant Convolution (GConv) empowers models to explore symmetries hidden in visual data, improving their performance.
Traditional GConv methods are limited by the strict operation rules in the group space, making it difficult to adapt to Symmetry-Breaking or non-rigid transformations.
We propose a novel Relaxed Rotation-Equivariant Network (R2Net) as the backbone and further develop the Symmetry-Breaking Object Detector (SBDet) for 2D object detection built upon it.
arXiv Detail & Related papers (2024-08-21T16:32:03Z) - Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
We show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations.
We evaluate the robustness and out-of-distribution generalisation capability of our model on the benchmark affine-invariant classification task.
arXiv Detail & Related papers (2023-10-17T16:04:33Z) - Accelerated Discovery of Machine-Learned Symmetries: Deriving the
Exceptional Lie Groups G2, F4 and E6 [55.41644538483948]
This letter introduces two improved algorithms that significantly speed up the discovery of symmetry transformations.
Given the significant complexity of the exceptional Lie groups, our results demonstrate that this machine-learning method for discovering symmetries is completely general and can be applied to a wide variety of labeled datasets.
arXiv Detail & Related papers (2023-07-10T20:25:44Z) - Generative Adversarial Symmetry Discovery [19.098785309131458]
LieGAN represents symmetry as interpretable Lie algebra basis and can discover various symmetries.
The learned symmetry can also be readily used in several existing equivariant neural networks to improve accuracy and generalization in prediction.
arXiv Detail & Related papers (2023-02-01T04:28:36Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - An Online Riemannian PCA for Stochastic Canonical Correlation Analysis [37.8212762083567]
We present an efficient algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices.
While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising.
arXiv Detail & Related papers (2021-06-08T23:38:29Z) - A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups [115.58550697886987]
We provide a completely general algorithm for solving for the equivariant layers of matrix groups.
In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before.
Our approach outperforms non-equivariant baselines, with applications to particle physics and dynamical systems.
arXiv Detail & Related papers (2021-04-19T17:21:54Z) - Group Equivariant Conditional Neural Processes [30.134634059773703]
We present the group equivariant conditional neural process (EquivCNP)
We show that EquivCNP achieves comparable performance to conventional conditional neural processes in a 1D regression task.
arXiv Detail & Related papers (2021-02-17T13:50:07Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.