Relaxed Rotational Equivariance via $G$-Biases in Vision
- URL: http://arxiv.org/abs/2408.12454v2
- Date: Sun, 25 Aug 2024 05:18:26 GMT
- Title: Relaxed Rotational Equivariance via $G$-Biases in Vision
- Authors: Zhiqiang Wu, Licheng Sun, Yingjie Liu, Jian Yang, Hanlin Dong, Shing-Ho J. Lin, Xuan Tang, Jinpeng Mi, Bo Jin, Xian Wei,
- Abstract summary: Group Equivariant Convolution (GConv) can effectively handle rotational symmetry data.
Real-world data rarely conforms to strict rotational symmetry commonly referred to as Rotational Symmetry-Breaking.
We propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called the $G$-Biases.
- Score: 19.814324876189772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group Equivariant Convolution (GConv) can effectively handle rotational symmetry data. They assume uniform and strict rotational symmetry across all features, as the transformations under the specific group. However, real-world data rarely conforms to strict rotational symmetry commonly referred to as Rotational Symmetry-Breaking in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called the $G$-Biases under the group order to break strict group constraints and achieve \textbf{R}elaxed \textbf{R}otational \textbf{E}quivarant \textbf{Conv}olution (RREConv). We conduct extensive experiments to validate Relaxed Rotational Equivariance on rotational symmetry groups $\mathcal{C}_n$ (e.g. $\mathcal{C}_2$, $\mathcal{C}_4$, and $\mathcal{C}_6$ groups). Further experiments demonstrate that our proposed RREConv-based methods achieve excellent performance, compared to existing GConv-based methods in classification and detection tasks on natural image datasets.
Related papers
- GMR-Conv: An Efficient Rotation and Reflection Equivariant Convolution Kernel Using Gaussian Mixture Rings [4.365790707793824]
We introduce an efficient convolution kernel that smooths radial symmetry using a mixture of Gaussian-weighted rings.
Experiments on eight classification and one segmentation datasets demonstrate that GMR-Conv not only matches conventional CNNs' performance but can also surpass it in applications with orientation-less data.
arXiv Detail & Related papers (2025-04-03T17:58:18Z) - Harmformer: Harmonic Networks Meet Transformers for Continuous Roto-Translation Equivariance [2.5864824580604515]
CNNs exhibit inherent equivariance to image translation, leading to efficient parameter and data usage, faster learning, and improved robustness.
The concept of translation equivariant networks has been successfully extended to rotation transformation using group convolution for discrete rotation groups and harmonic functions for the continuous rotation group encompassing $360circ$.
We introduce the Harmformer, a harmonic transformer with a convolutional stem that achieves equivariance for both translation and continuous rotation.
arXiv Detail & Related papers (2024-11-06T09:39:25Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - SBDet: A Symmetry-Breaking Object Detector via Relaxed Rotation-Equivariance [26.05910177212846]
Group Equivariant Convolution (GConv) empowers models to explore symmetries hidden in visual data, improving their performance.
Traditional GConv methods are limited by the strict operation rules in the group space, making it difficult to adapt to Symmetry-Breaking or non-rigid transformations.
We propose a novel Relaxed Rotation-Equivariant Network (R2Net) as the backbone and further develop the Symmetry-Breaking Object Detector (SBDet) for 2D object detection built upon it.
arXiv Detail & Related papers (2024-08-21T16:32:03Z) - Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
We show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations.
We evaluate the robustness and out-of-distribution generalisation capability of our model on the benchmark affine-invariant classification task.
arXiv Detail & Related papers (2023-10-17T16:04:33Z) - Accelerated Discovery of Machine-Learned Symmetries: Deriving the
Exceptional Lie Groups G2, F4 and E6 [55.41644538483948]
This letter introduces two improved algorithms that significantly speed up the discovery of symmetry transformations.
Given the significant complexity of the exceptional Lie groups, our results demonstrate that this machine-learning method for discovering symmetries is completely general and can be applied to a wide variety of labeled datasets.
arXiv Detail & Related papers (2023-07-10T20:25:44Z) - Generative Adversarial Symmetry Discovery [19.098785309131458]
LieGAN represents symmetry as interpretable Lie algebra basis and can discover various symmetries.
The learned symmetry can also be readily used in several existing equivariant neural networks to improve accuracy and generalization in prediction.
arXiv Detail & Related papers (2023-02-01T04:28:36Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift [91.38796390449504]
Combinations of domains and labels are not observed during training but appear in the test environment.
We provide a unique formulation of the combination shift problem based on the concepts of homomorphism, equivariance, and a refined definition of disentanglement.
arXiv Detail & Related papers (2022-08-03T12:31:31Z) - Orthonormal Convolutions for the Rotation Based Iterative
Gaussianization [64.44661342486434]
This paper elaborates an extension of rotation-based iterative Gaussianization, RBIG, which makes image Gaussianization possible.
In images its application has been restricted to small image patches or isolated pixels, because rotation in RBIG is based on principal or independent component analysis.
We present the emphConvolutional RBIG: an extension that alleviates this issue by imposing that the rotation in RBIG is a convolution.
arXiv Detail & Related papers (2022-06-08T12:56:34Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - Exploiting Learned Symmetries in Group Equivariant Convolutions [20.63056707649319]
Group Equivariant Convolutions (GConvs) enable convolutional neural networks to be equivariant to various transformation groups.
We show that GConvs can be efficiently decomposed into depthwise separable convolutions.
arXiv Detail & Related papers (2021-06-09T08:50:22Z) - An Online Riemannian PCA for Stochastic Canonical Correlation Analysis [37.8212762083567]
We present an efficient algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices.
While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising.
arXiv Detail & Related papers (2021-06-08T23:38:29Z) - A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups [115.58550697886987]
We provide a completely general algorithm for solving for the equivariant layers of matrix groups.
In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before.
Our approach outperforms non-equivariant baselines, with applications to particle physics and dynamical systems.
arXiv Detail & Related papers (2021-04-19T17:21:54Z) - GroupifyVAE: from Group-based Definition to VAE-based Unsupervised
Representation Disentanglement [91.9003001845855]
VAE-based unsupervised disentanglement can not be achieved without introducing other inductive bias.
We address VAE-based unsupervised disentanglement by leveraging the constraints derived from the Group Theory based definition as the non-probabilistic inductive bias.
We train 1800 models covering the most prominent VAE-based models on five datasets to verify the effectiveness of our method.
arXiv Detail & Related papers (2021-02-20T09:49:51Z) - Group Equivariant Conditional Neural Processes [30.134634059773703]
We present the group equivariant conditional neural process (EquivCNP)
We show that EquivCNP achieves comparable performance to conventional conditional neural processes in a 1D regression task.
arXiv Detail & Related papers (2021-02-17T13:50:07Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.