論文の概要: AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines
- arxiv url: http://arxiv.org/abs/2408.12491v1
- Date: Thu, 22 Aug 2024 15:31:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 13:12:21.505234
- Title: AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines
- Title(参考訳): 軟部腫瘍・骨腫瘍の放射線画像診断におけるAI : CLAIMおよびFuture-AIガイドラインに対する体系的評価
- Authors: Douwe J. Spaanderman, Matthew Marzetti, Xinyi Wan, Andrew F. Scarsbrook, Philip Robinson, Edwin H. G. Oei, Jacob J. Visser, Robert Hemke, Kirsten van Langevelde, David F. Hanff, Geert J. L. H. van Leenders, Cornelis Verhoef, Dirk J. Gruühagen, Wiro J. Niessen, Stefan Klein, Martijn P. A. Starmans,
- Abstract要約: 軟部腫瘍と骨腫瘍 (STBT) は稀で, 診断に難渋する病変であり, 様々な臨床症状と治療のアプローチがある。
本稿では,これらの腫瘍の診断と予後のための放射線画像を用いた人工知能(AI)法の概要について概説する。
- 参考スコア(独自算出の注目度): 1.5332408886895255
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches. This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours, highlighting challenges in clinical translation, and evaluating study alignment with the Checklist for AI in Medical Imaging (CLAIM) and the FUTURE-AI international consensus guidelines for trustworthy and deployable AI to promote the clinical translation of AI methods. The review covered literature from several bibliographic databases, including papers published before 17/07/2024. Original research in peer-reviewed journals focused on radiology-based AI for diagnosing or prognosing primary STBT was included. Exclusion criteria were animal, cadaveric, or laboratory studies, and non-English papers. Abstracts were screened by two of three independent reviewers for eligibility. Eligible papers were assessed against guidelines by one of three independent reviewers. The search identified 15,015 abstracts, from which 325 articles were included for evaluation. Most studies performed moderately on CLAIM, averaging a score of 28.9$\pm$7.5 out of 53, but poorly on FUTURE-AI, averaging 5.1$\pm$2.1 out of 30. Imaging-AI tools for STBT remain at the proof-of-concept stage, indicating significant room for improvement. Future efforts by AI developers should focus on design (e.g. define unmet clinical need, intended clinical setting and how AI would be integrated in clinical workflow), development (e.g. build on previous work, explainability), evaluation (e.g. evaluating and addressing biases, evaluating AI against best practices), and data reproducibility and availability (making documented code and data publicly available). Following these recommendations could improve clinical translation of AI methods.
- Abstract(参考訳): 軟部腫瘍と骨腫瘍 (STBT) は稀で, 診断に難渋する病変であり, 様々な臨床症状と治療のアプローチがある。
組織的なレビューでは、これらの腫瘍の診断と予後のための放射線画像を用いた人工知能(AI)手法の概要、臨床翻訳における課題の強調、臨床画像におけるAIのチェックリスト(CLAIM)と、信頼性とデプロイ可能なAIのためのFuture-AI国際コンセンサスガイドラインとのアライメントの評価について紹介する。
このレビューは17/07/2024以前に出版された論文を含む、いくつかの文献データベースからの文献をカバーしている。
放射線学に基づく一次STBTの診断・診断のためのAIに焦点を当てた査読論文の原点研究を含む。
除外基準は、動物、カダベリック、または実験室、および非英語論文である。
抽象化は3人の独立したレビュアーのうち2人によって検査された。
適格な論文は、3人の独立したレビュアーの1人がガイドラインに対して評価した。
調査では15,015項目を抽出し,そのうち325項目を評価対象とした。
ほとんどの研究はCLAIMでは、53点中28.9$\pm$7.5点、30点中5.1$\pm$2.1点、FUTURE-AIでは劣っている。
STBTのイメージングAIツールは概念実証段階に留まっており、改善の余地があることが示唆されている。
AI開発者による今後の取り組みは、設計(例えば、アンメットな臨床ニーズ、意図された臨床設定、AIが臨床ワークフローにどのように統合されるかを定義する)、開発(例えば、以前の作業のビルド、説明可能性)、評価(例えば、バイアスの評価と対処、ベストプラクティスに対するAIの評価)、データ再現性と可用性(ドキュメント化されたコードとデータを公開する)に焦点を当てるべきである。
これらの勧告に従うことで、AIメソッドの臨床的翻訳を改善することができる。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Promoting AI Competencies for Medical Students: A Scoping Review on Frameworks, Programs, and Tools [1.8402287369342527]
医療におけるAIの重要性の高まりにもかかわらず、それが伝統的な、しばしば過負荷の医療カリキュラムに採用されている範囲は不明である。
このレビューは、AI能力のある医療従事者を構築するための実践的で関連する教育戦略を開発するためのロードマップを提供する。
論文 参考訳(メタデータ) (2024-07-10T16:34:41Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - A survey of recent methods for addressing AI fairness and bias in
biomedicine [48.46929081146017]
人工知能システムは、人種や性別に基づくような社会的不平等を永続するか、偏見を示すことができる。
バイオメディカル自然言語処理 (NLP) やコンピュータビジョン (CV) の分野での様々な脱バイアス法に関する最近の論文を調査した。
我々は,2018年1月から2023年12月にかけて,複数のキーワードの組み合わせを用いて,PubMed,ACMデジタルライブラリ,IEEE Xploreに関する文献検索を行った。
バイオメディシンに応用可能な一般領域からの他の方法について検討し, バイアスに対処し, 公平性を向上する方法について検討した。
論文 参考訳(メタデータ) (2024-02-13T06:38:46Z) - Towards Conversational Diagnostic AI [32.84876349808714]
本稿では,診断対話に最適化されたLarge Language Model (LLM)ベースのAIシステムであるAMIE(Articulate Medical Intelligence Explorer)を紹介する。
AMIEは、さまざまな疾患条件にまたがって学習をスケールするための自動フィードバック機構を備えた、セルフプレイベースのシミュレート環境を使用する。
AMIEの診断精度は, 専門医によると32例中28例, 患者アクターでは26例中24例で高い成績を示した。
論文 参考訳(メタデータ) (2024-01-11T04:25:06Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - AI and Non AI Assessments for Dementia [11.5631890541199]
人工知能領域の最近の進歩は、様々な種類のAIによる認知症評価の開発につながっている。
本論文は,認知症認知のための既存の解決策を臨床医に説明するための文献のギャップを埋めるものである。
認知症に関するAIおよび非AIアセスメントに関する論文のレビューに続いて、AIと医療コミュニティの両方で、さまざまな認知症アセスメントに関する貴重な情報を提供する。
論文 参考訳(メタデータ) (2023-06-30T03:28:47Z) - Evaluation of Popular XAI Applied to Clinical Prediction Models: Can
They be Trusted? [2.0089256058364358]
透明性と説明可能性の欠如は、機械学習(ML)アルゴリズムの臨床的採用を妨げる。
本研究は、医療現場における予測モデルの説明に使用される2つの一般的なXAI手法を評価する。
論文 参考訳(メタデータ) (2023-06-21T02:29:30Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。