論文の概要: AI and Non AI Assessments for Dementia
- arxiv url: http://arxiv.org/abs/2307.01210v1
- Date: Fri, 30 Jun 2023 03:28:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-09 13:41:40.707479
- Title: AI and Non AI Assessments for Dementia
- Title(参考訳): 認知症に対するAIと非AIアセスメント
- Authors: Mahboobeh (Mah) Parsapoor (Parsa) and Hamed Ghodrati, Vincenzo
Dentamaro and Christopher R. Madan and Ioulietta Lazarou and Spiros
Nikolopoulos and Ioannis Kompatsiaris
- Abstract要約: 人工知能領域の最近の進歩は、様々な種類のAIによる認知症評価の開発につながっている。
本論文は,認知症認知のための既存の解決策を臨床医に説明するための文献のギャップを埋めるものである。
認知症に関するAIおよび非AIアセスメントに関する論文のレビューに続いて、AIと医療コミュニティの両方で、さまざまな認知症アセスメントに関する貴重な情報を提供する。
- 参考スコア(独自算出の注目度): 11.5631890541199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current progress in the artificial intelligence domain has led to the
development of various types of AI-powered dementia assessments, which can be
employed to identify patients at the early stage of dementia. It can
revolutionize the dementia care settings. It is essential that the medical
community be aware of various AI assessments and choose them considering their
degrees of validity, efficiency, practicality, reliability, and accuracy
concerning the early identification of patients with dementia (PwD). On the
other hand, AI developers should be informed about various non-AI assessments
as well as recently developed AI assessments. Thus, this paper, which can be
readable by both clinicians and AI engineers, fills the gap in the literature
in explaining the existing solutions for the recognition of dementia to
clinicians, as well as the techniques used and the most widespread dementia
datasets to AI engineers. It follows a review of papers on AI and non-AI
assessments for dementia to provide valuable information about various dementia
assessments for both the AI and medical communities. The discussion and
conclusion highlight the most prominent research directions and the maturity of
existing solutions.
- Abstract(参考訳): 人工知能領域の最近の進歩は、認知症の早期の患者を特定するために使用できる、様々な種類のAIによる認知症評価の開発につながっている。
認知症ケア設定に革命をもたらす可能性がある。
認知症(PwD)の早期診断に関する妥当性、効率性、実用性、信頼性、正確性を考慮して、医療コミュニティが様々なAIアセスメントを意識し、選択することが不可欠である。
一方、AI開発者は、最近開発されたAIアセスメントと同様に、さまざまな非AIアセスメントについて知らせるべきである。
そこで本論文は, 臨床医とai技術者の両方が読むことができ, 臨床医への認知症認識のための既存のソリューションと, 使用される技術と最も広く普及している認知症データセットを説明する上で, 文献のギャップを埋めるものである。
認知症に関するAIおよび非AIアセスメントに関する論文のレビューに続いて、AIと医療コミュニティの両方で、さまざまな認知症アセスメントに関する貴重な情報を提供する。
議論と結論は、最も顕著な研究の方向性と既存のソリューションの成熟度を強調している。
関連論文リスト
- Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
遺伝性網膜疾患(英: InheritedRetinal disease、IRD)は、進行性視力低下を引き起こす多様な遺伝性疾患群であり、労働年齢層の視覚障害の主要な原因である。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
論文 参考訳(メタデータ) (2024-10-10T03:14:51Z) - AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines [1.5332408886895255]
軟部腫瘍と骨腫瘍 (STBT) は稀で, 診断に難渋する病変であり, 様々な臨床症状と治療のアプローチがある。
本稿では,これらの腫瘍の診断と予後のための放射線画像を用いた人工知能(AI)法の概要について概説する。
論文 参考訳(メタデータ) (2024-08-22T15:31:48Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
本論文は,医療関連テキストにおける感情評価における人工知能の利用に関する方法論的考察である。
我々は、感情分析を強化し、感情を分類し、患者の結果を予測するためにAIを利用する多くの研究を精査する。
AIの倫理的応用を保証すること、患者の機密性を保護すること、アルゴリズムの手続きにおける潜在的なバイアスに対処することを含む、継続的な課題がある。
論文 参考訳(メタデータ) (2024-03-14T15:58:13Z) - Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness [47.51360338851017]
エビデンスベースの医療は、医療の意思決定と実践を最大限に活用することで、医療の質を向上させることを約束する。
様々な情報源から得ることができる医学的証拠の急速な成長は、明らかな情報の収集、評価、合成に挑戦する。
大規模言語モデルによって実証された、生成AIの最近の進歩は、困難な作業の促進を約束する。
論文 参考訳(メタデータ) (2023-11-19T03:29:45Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Achievements and Challenges in Explaining Deep Learning based
Computer-Aided Diagnosis Systems [4.9449660544238085]
我々は、既知の疾患基準の検証のための説明可能なAIの開発における初期の成果について論じる。
我々は、臨床意思決定支援ツールとしてのAIの実践的応用の道に立つ、残る課題をいくつか強調する。
論文 参考訳(メタデータ) (2020-11-26T08:08:19Z) - Artificial Artificial Intelligence: Measuring Influence of AI
'Assessments' on Moral Decision-Making [48.66982301902923]
ドナー腎アロケーションに関する道徳的意思決定に対する疑似AIからのフィードバックの効果を検討した。
患者が腎臓を受容器するかどうかの判断は、AIによって与えられると認識される参加者自身の意思決定に関するフィードバックに影響される可能性があるという証拠がいくつか見出された。
論文 参考訳(メタデータ) (2020-01-13T14:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。