論文の概要: Quantum Circuit Optimization using Differentiable Programming of Tensor Network States
- arxiv url: http://arxiv.org/abs/2408.12583v1
- Date: Thu, 22 Aug 2024 17:48:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 12:52:30.694348
- Title: Quantum Circuit Optimization using Differentiable Programming of Tensor Network States
- Title(参考訳): テンソルネットワーク状態の微分プログラミングを用いた量子回路最適化
- Authors: David Rogerson, Ananda Roy,
- Abstract要約: このアルゴリズムは古典的なハードウェア上で動作し、浅い正確な量子回路を見つける。
すべての回路は、適切なCPU時間と控えめなメモリ要求下で高い状態忠実性を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient quantum circuit optimization schemes are central to quantum simulation of strongly interacting quantum many body systems. Here, we present an optimization algorithm which combines machine learning techniques and tensor network methods. The said algorithm runs on classical hardware and finds shallow, accurate quantum circuits by minimizing scalar cost functions. The gradients relevant for the optimization process are computed using the reverse mode automatic differentiation technique implemented on top of the time-evolved block decimation algorithm for matrix product states. A variation of the ADAM optimizer is utilized to perform a gradient descent on the manifolds of charge conserving unitary operators to find the optimal quantum circuit. The efficacy of this approach is demonstrated by finding the ground states of spin chain Hamiltonians for the Ising, three-state Potts and the massive Schwinger models for system sizes up to L=100. The first ten excited states of these models are also obtained for system sizes L=24. All circuits achieve high state fidelities within reasonable CPU time and modest memory requirements.
- Abstract(参考訳): 効率的な量子回路最適化スキームは、強く相互作用する量子多体系の量子シミュレーションの中心である。
本稿では,機械学習手法とテンソルネットワーク手法を組み合わせた最適化アルゴリズムを提案する。
このアルゴリズムは従来のハードウェア上で動作し、スカラーコスト関数を最小化することで、浅く正確な量子回路を見つける。
行列積状態に対する時間進化ブロックデシミテーションアルゴリズム上に実装された逆モード自動微分法を用いて、最適化プロセスに関連する勾配を計算する。
ADAMオプティマイザの変動を利用して、ユニタリ演算子を保存する電荷保存多様体の勾配降下を行い、最適量子回路を求める。
このアプローチの有効性は、Ising, 3-state Potts, and the massive Schwinger model for the system sizes to L=100のスピン鎖ハミルトニアンの基底状態を見つけることによって示される。
これらのモデルの最初の10個の励起状態は、システムサイズ L=24 に対しても得られる。
すべての回路は、適切なCPU時間と控えめなメモリ要求下で高い状態忠実性を達成する。
関連論文リスト
- Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs [1.0749601922718608]
ユニタリおよび非ユニタリ対角作用素は量子アルゴリズムの基本的な構成要素である。
本稿では,一元対角演算子と非単元対角演算子を効率よく調整可能な量子回路で実装する一般手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T15:42:25Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
グラディエントアセンセントパルス工学(GRAPE)法は量子制御の最適化に広く用いられている。
我々は、コヒーレント制御と非コヒーレント制御の両方によって駆動されるオープン量子系の目的関数を最適化するために、GRAPE法を採用する。
状態-状態遷移問題に対する数値シミュレーションによりアルゴリズムの効率を実証する。
論文 参考訳(メタデータ) (2023-07-17T13:37:18Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
行列生成状態(MPS)から短深さ量子回路を生成する新しいアルゴリズムであるAQCtensorを導入する。
我々のアプローチは、量子多体ハミルトニアンの時間進化から生じる量子状態の準備に特化している。
100量子ビットのシミュレーション問題に対して、AQCtensorは、結果の最適化回路の深さの少なくとも1桁の縮小を実現していることを示す。
論文 参考訳(メタデータ) (2023-01-20T14:40:29Z) - Riemannian quantum circuit optimization for Hamiltonian simulation [2.1227079314039057]
ハミルトンシミュレーションは量子コンピューティングの自然な応用である。
翻訳不変系では、そのような回路トポロジのゲートは古典的なコンピュータでさらに最適化することができる。
一次元格子上のイジングとハイゼンベルクのモデルに対して、我々は桁違いの精度の向上を達成する。
論文 参考訳(メタデータ) (2022-12-15T00:00:17Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
本稿では,雑音量子プロセッサ上での小型から中規模の変分アルゴリズムを提案する。
提案手法は,計算負荷をこれらのハイブリッドアルゴリズムの古典的成分にシフトさせ,量子プロセッサへのクエリ数を劇的に削減する。
論文 参考訳(メタデータ) (2022-11-02T14:11:25Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,異なるアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Progress towards analytically optimal angles in quantum approximate
optimisation [0.0]
量子近似最適化アルゴリズム(Quantum Approximate optimization algorithm)は、量子プロセッサ上で実行される時間可変分割演算子である。
p=1$層の最適パラメータが1自由変数に減少し、熱力学の極限で最適角度を回復することが証明された。
さらに、重なり関数の勾配の消失条件は、回路パラメータ間の線形関係を導出し、キュービット数に依存しない類似の形式を持つことを示した。
論文 参考訳(メタデータ) (2021-09-23T18:00:13Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。