Machine Learning Potentials: A Roadmap Toward Next-Generation Biomolecular Simulations
- URL: http://arxiv.org/abs/2408.12625v1
- Date: Sat, 17 Aug 2024 07:53:33 GMT
- Title: Machine Learning Potentials: A Roadmap Toward Next-Generation Biomolecular Simulations
- Authors: Gianni De Fabritiis,
- Abstract summary: Machine learning potentials offer a revolutionary, unifying framework for molecular simulations across scales, from quantum chemistry to coarse-grained models.
I discuss key challenges that must be addressed to fully realize their transformative potential in chemical biology and related fields.
- Score: 4.169915659794567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning potentials offer a revolutionary, unifying framework for molecular simulations across scales, from quantum chemistry to coarse-grained models. Here, I explore their potential to dramatically improve accuracy and scalability in simulating complex molecular systems. I discuss key challenges that must be addressed to fully realize their transformative potential in chemical biology and related fields.
Related papers
- QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
We propose a novel methodology for transferring knowledge obtained from simple molecular systems to a more complex one.
We focus on the classification of high and low free-energy states.
Our results show a remarkable AUC of 0.92 for transfer learning from tri-alanine to the deca-alanine system.
arXiv Detail & Related papers (2022-05-06T16:21:00Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
We introduce an optimized implementation of the hybrid method (NNP/MM), which combines neural network potentials (NNP) and molecular mechanics (MM)
This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency.
It has enabled us to increase the simulation speed by 5 times and achieve a combined sampling of one microsecond for each complex, marking the longest simulations ever reported for this class of simulation.
arXiv Detail & Related papers (2022-01-20T10:57:20Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Symmetry-adapted graph neural networks for constructing molecular
dynamics force fields [10.820190246285122]
We develop a symmetry-adapted graph neural networks framework to construct force fields automatically for molecular dynamics simulations.
We show that MDGNN accurately reproduces the results of both classical and first-principles molecular dynamics.
arXiv Detail & Related papers (2021-01-08T09:32:24Z) - TorchMD: A deep learning framework for molecular simulations [0.0]
We present TorchMD, a framework for molecular simulations with mixed classical and machine learning potentials.
We validate it using standard Amber all-atom simulations, learning an ab-initio potential, performing an end-to-end training and finally learning and simulating a coarse-grained model for protein folding.
arXiv Detail & Related papers (2020-12-22T15:43:27Z) - Coarse Graining Molecular Dynamics with Graph Neural Networks [3.0279361008741827]
We introduce a hybrid architecture for the machine learning of coarse-grained force fields that learns their own features via a subnetwork.
We demonstrate that this framework succeeds at reproducing the thermodynamics for small biomolecular systems.
arXiv Detail & Related papers (2020-07-22T13:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.