論文の概要: Multilevel Interpretability Of Artificial Neural Networks: Leveraging Framework And Methods From Neuroscience
- arxiv url: http://arxiv.org/abs/2408.12664v1
- Date: Thu, 22 Aug 2024 18:17:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:48:16.097545
- Title: Multilevel Interpretability Of Artificial Neural Networks: Leveraging Framework And Methods From Neuroscience
- Title(参考訳): ニューラルネットワークの多レベル解釈可能性:神経科学の枠組みと手法の活用
- Authors: Zhonghao He, Jascha Achterberg, Katie Collins, Kevin Nejad, Danyal Akarca, Yinzhu Yang, Wes Gurnee, Ilia Sucholutsky, Yuhan Tang, Rebeca Ianov, George Ogden, Chole Li, Kai Sandbrink, Stephen Casper, Anna Ivanova, Grace W. Lindsay,
- Abstract要約: 生体と人工のニューラルシステムの両方を解釈するには、これらのシステムを複数のレベルで分析する必要がある、と我々は主張する。
生体および人工神経系の解析に使用できる分析ツールのシリーズを提示する。
全体として、マルチレベル解釈可能性フレームワークは、ニューラルネットワークの複雑さに取り組むための原則化された方法を提供する。
- 参考スコア(独自算出の注目度): 7.180126523609834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As deep learning systems are scaled up to many billions of parameters, relating their internal structure to external behaviors becomes very challenging. Although daunting, this problem is not new: Neuroscientists and cognitive scientists have accumulated decades of experience analyzing a particularly complex system - the brain. In this work, we argue that interpreting both biological and artificial neural systems requires analyzing those systems at multiple levels of analysis, with different analytic tools for each level. We first lay out a joint grand challenge among scientists who study the brain and who study artificial neural networks: understanding how distributed neural mechanisms give rise to complex cognition and behavior. We then present a series of analytical tools that can be used to analyze biological and artificial neural systems, organizing those tools according to Marr's three levels of analysis: computation/behavior, algorithm/representation, and implementation. Overall, the multilevel interpretability framework provides a principled way to tackle neural system complexity; links structure, computation, and behavior; clarifies assumptions and research priorities at each level; and paves the way toward a unified effort for understanding intelligent systems, may they be biological or artificial.
- Abstract(参考訳): ディープラーニングシステムは数十億のパラメータにスケールするので、内部構造と外部の振る舞いを関連付けることは非常に難しい。
神経科学者と認知科学者は何十年もの間、特に複雑なシステム(脳)を分析してきた。
本研究では, 生体と人工のニューラルシステムの両方を解釈するには, 各レベルの異なる分析ツールを用いて, 複数のレベルの分析を行う必要がある,と論じる。
私たちはまず、脳を研究し、人工ニューラルネットワークを研究する科学者の間で、分散ニューラルネットワークが複雑な認知と行動を引き起こす方法を理解するという、共同で大きな課題を提起しました。
次に、生物学的および人工的なニューラルネットワークの分析に使用でき、Marrの3つの分析レベル(計算/振る舞い、アルゴリズム/表現、実装)に従ってそれらのツールを整理する。
全体として、多レベル解釈可能性フレームワークは、ニューラルネットワークの複雑さに取り組むための原則的な方法を提供し、構造、計算、振る舞いをリンクし、各レベルでの仮定と研究の優先順位を明確にし、知的システムを理解するための統一された取り組みへの道を開く。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
本稿では,ニューラルネットワークの内部機構について,ニューラル集団幾何学のレンズを用いて検討する。
学習目的の違いが,これらのモデルの組織戦略の違いにどのように影響するかを定量的に評価する。
これらの分析は、ニューラルネットワークにおける機械的および規範的理論を神経集団幾何学を通してブリッジする強力な方向を示す。
論文 参考訳(メタデータ) (2023-12-21T20:40:51Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
本稿では,様々な認知タスクを行う単純な人工ニューラルネットワークが採用する情報処理戦略について検討する。
結果は、ニューラルネットワークが複数の多様なタスクを学習するにつれて、シナジーが増加することを示している。
トレーニング中に無作為にニューロンを停止させると、ネットワークの冗長性が増加し、ロバスト性の増加に対応する。
論文 参考訳(メタデータ) (2022-10-06T15:36:27Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - Interpretability of Neural Network With Physiological Mechanisms [5.1971653175509145]
ディープラーニングは、レグレッションと分類タスクの様々な領域で異常な精度を達成した強力な最先端技術として、引き続き機能している。
ニューラルネットワークモデルを最初に提案する目的は、数学的表現アプローチを使用して複雑な人間の脳を理解することを改善することである。
近年のディープラーニング技術は、ブラックボックス近似器として扱われることによって、機能的プロセスの解釈を失う傾向にある。
論文 参考訳(メタデータ) (2022-03-24T21:40:04Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
生体および人工ニューラルネットワークの機能に関する洞察を提供する幾何学的アプローチの例を概観する。
神経集団幾何学は、生体と人工のニューラルネットワークにおける構造と機能の理解を統一する可能性がある。
論文 参考訳(メタデータ) (2021-04-14T18:10:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。