Benchmarking Counterfactual Interpretability in Deep Learning Models for Time Series Classification
- URL: http://arxiv.org/abs/2408.12666v2
- Date: Thu, 10 Oct 2024 02:52:38 GMT
- Title: Benchmarking Counterfactual Interpretability in Deep Learning Models for Time Series Classification
- Authors: Ziwen Kan, Shahbaz Rezaei, Xin Liu,
- Abstract summary: Counterfactual (CF) methods are used to identify minimal changes in instances to alter the model predictions.
Despite extensive research, no existing work benchmarks CF methods in the time series domain.
In this work, we redesign quantitative metrics to accurately capture desirable characteristics in CFs.
- Score: 6.683066713491661
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The popularity of deep learning methods in the time series domain boosts interest in interpretability studies, including counterfactual (CF) methods. CF methods identify minimal changes in instances to alter the model predictions. Despite extensive research, no existing work benchmarks CF methods in the time series domain. Additionally, the results reported in the literature are inconclusive due to the limited number of datasets and inadequate metrics. In this work, we redesign quantitative metrics to accurately capture desirable characteristics in CFs. We specifically redesign the metrics for sparsity and plausibility and introduce a new metric for consistency. Combined with validity, generation time, and proximity, we form a comprehensive metric set. We systematically benchmark 6 different CF methods on 20 univariate datasets and 10 multivariate datasets with 3 different classifiers. Results indicate that the performance of CF methods varies across metrics and among different models. Finally, we provide case studies and a guideline for practical usage.
Related papers
- Ensemble Methods for Sequence Classification with Hidden Markov Models [8.241486511994202]
We present a lightweight approach to sequence classification using Ensemble Methods for Hidden Markov Models (HMMs)
HMMs offer significant advantages in scenarios with imbalanced or smaller datasets due to their simplicity, interpretability, and efficiency.
Our ensemble-based scoring method enables the comparison of sequences of any length and improves performance on imbalanced datasets.
arXiv Detail & Related papers (2024-09-11T20:59:32Z) - Quantifying Variance in Evaluation Benchmarks [34.12254884944099]
We measure variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training.
We find that simple changes, such as framing choice tasks as completion tasks, can often reduce variance for smaller scale.
More involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance.
arXiv Detail & Related papers (2024-06-14T17:59:54Z) - Shapelet-based Model-agnostic Counterfactual Local Explanations for Time
Series Classification [5.866975269666861]
We propose a model-agnostic instance-based post-hoc explainability method for time series classification.
The proposed algorithm, namely Time-CF, leverages shapelets and TimeGAN to provide counterfactual explanations for arbitrary time series classifiers.
arXiv Detail & Related papers (2024-02-02T11:57:53Z) - Benchmarking Test-Time Adaptation against Distribution Shifts in Image
Classification [77.0114672086012]
Test-time adaptation (TTA) is a technique aimed at enhancing the generalization performance of models by leveraging unlabeled samples solely during prediction.
We present a benchmark that systematically evaluates 13 prominent TTA methods and their variants on five widely used image classification datasets.
arXiv Detail & Related papers (2023-07-06T16:59:53Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
A corpus of metrics is designed for measuring the accuracy, robustness, and bounds of algorithms for learning with long-tailed distribution.
Based on our benchmarks, we re-evaluate the performance of existing methods on CIFAR10 and CIFAR100 datasets.
arXiv Detail & Related papers (2023-02-03T02:40:54Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Bayesian Evidential Learning for Few-Shot Classification [22.46281648187903]
Few-Shot Classification aims to generalize from base classes to novel classes given very limited labeled samples.
State-of-the-art solutions involve learning to find a good metric and representation space to compute the distance between samples.
Despite the promising accuracy performance, how to model uncertainty for metric-based FSC methods effectively is still a challenge.
arXiv Detail & Related papers (2022-07-19T03:58:00Z) - Robust Augmentation for Multivariate Time Series Classification [20.38907456958682]
We show that the simple methods of cutout, cutmix, mixup, and window warp improve the robustness and overall performance.
We show that the InceptionTime network with augmentation improves accuracy by 1% to 45% in 18 different datasets.
arXiv Detail & Related papers (2022-01-27T18:57:49Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
Collaborative filtering (CF) is a fundamental approach for recommender systems.
In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model.
Key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction and prediction function.
arXiv Detail & Related papers (2021-06-14T14:30:32Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
We present a novel deep metric meta-generation method to generate a specific metric for a new few-shot learning task.
In this study, we structure the metric using a three-layer deep attentive network that is flexible enough to produce a discriminative metric for each task.
We gain surprisingly obvious performance improvement over state-of-the-art competitors, especially in the challenging cases.
arXiv Detail & Related papers (2020-12-03T02:07:43Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.