Multi-Treatment Multi-Task Uplift Modeling for Enhancing User Growth
- URL: http://arxiv.org/abs/2408.12803v1
- Date: Fri, 23 Aug 2024 02:44:08 GMT
- Title: Multi-Treatment Multi-Task Uplift Modeling for Enhancing User Growth
- Authors: Yuxiang Wei, Zhaoxin Qiu, Yingjie Li, Yuke Sun, Xiaoling Li,
- Abstract summary: We propose a Multi-Treatment Multi-Task (MTMT) uplift network to estimate treatment effects in a multi-task scenario.
MTMT encodes user features and treatments to measure natural responses per task.
MTMT has been deployed in our gaming platform to improve user experience.
- Score: 12.243349396069934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a key component in boosting online user growth, uplift modeling aims to measure individual user responses (e.g., whether to play the game) to various treatments, such as gaming bonuses, thereby enhancing business outcomes. However, previous research typically considers a single-task, single-treatment setting, where only one treatment exists and the overall treatment effect is measured by a single type of user response. In this paper, we propose a Multi-Treatment Multi-Task (MTMT) uplift network to estimate treatment effects in a multi-task scenario. We identify the multi-treatment problem as a causal inference problem with a tiered response, comprising a base effect (from offering a treatment) and an incremental effect (from offering a specific type of treatment), where the base effect can be numerically much larger than the incremental effect. Specifically, MTMT separately encodes user features and treatments. The user feature encoder uses a multi-gate mixture of experts (MMOE) network to encode relevant user features, explicitly learning inter-task relations. The resultant embeddings are used to measure natural responses per task. Furthermore, we introduce a treatment-user feature interaction module to model correlations between each treatment and user feature. Consequently, we separately measure the base and incremental treatment effect for each task based on the produced treatment-aware representations. Experimental results based on an offline public dataset and an online proprietary dataset demonstrate the effectiveness of MTMT in single/multi-treatment and single/multi-task settings. Additionally, MTMT has been deployed in our gaming platform to improve user experience.
Related papers
- Pilot: Building the Federated Multimodal Instruction Tuning Framework [79.56362403673354]
Our framework integrates two stages of "adapter on adapter" into the connector of the vision encoder and the LLM.
In stage 1, we extract task-specific features and client-specific features from visual information.
In stage 2, we build the cross-task Mixture-of-Adapters(CT-MoA) module to perform cross-task interaction.
arXiv Detail & Related papers (2025-01-23T07:49:24Z) - When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications [57.342772288710044]
We propose a novel parameter efficient fine-tuning framework for multi-task medical applications, dubbed as MOELoRA.
For unifying MOE and LoRA, we devise multiple experts as the trainable parameters, where each expert consists of a pair of low-rank matrices to retain the small size of trainable parameters.
We conduct experiments on a multi-task medical dataset, indicating MOELoRA outperforms the existing parameter efficient fine-tuning methods.
arXiv Detail & Related papers (2023-10-21T17:18:09Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Explicit Feature Interaction-aware Uplift Network for Online Marketing [25.325081105648096]
uplift modeling aims to accurately capture the degree to which different treatments motivate different users.
We propose an explicit feature interaction-aware uplift network (EFIN) to address these two problems.
Our EFIN has been deployed in a credit card bill payment scenario of a large online financial platform with a significant improvement.
arXiv Detail & Related papers (2023-06-01T03:26:11Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios.
The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input.
We propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning framework to learn shared and behavior-specific interests for different behaviors.
arXiv Detail & Related papers (2022-08-03T05:28:14Z) - DESCN: Deep Entire Space Cross Networks for Individual Treatment Effect
Estimation [7.060064266376701]
Causal Inference has wide applications in various areas such as E-commerce and precision medicine.
This paper proposes Deep Entire Space Cross Networks (DESCN) to model treatment effects from an end-to-end perspective.
arXiv Detail & Related papers (2022-07-19T01:25:31Z) - Multi-Task Processes [13.362632630637707]
We propose Multi-Task Processes (MTPs) to infer tasks realized from multiple processes.
We show that MTPs can successfully model multiple tasks jointly by discovering and exploiting their correlations in various real-world data.
arXiv Detail & Related papers (2021-10-28T08:45:43Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.