E-code: Mastering Efficient Code Generation through Pretrained Models and Expert Encoder Group
- URL: http://arxiv.org/abs/2408.12948v1
- Date: Fri, 23 Aug 2024 09:57:37 GMT
- Title: E-code: Mastering Efficient Code Generation through Pretrained Models and Expert Encoder Group
- Authors: Yue Pan, Chen Lyu, Zhenyu Yang, Lantian Li, Qi Liu, Xiuting Shao,
- Abstract summary: This study aims to address the research gap in this domain, offering practical solutions to the various challenges encountered.
Specifically, we have overcome the constraints of traditional performance error rectification strategies and developed a Language Model (LM) tailored for the competitive code efficiency optimization realm.
- Score: 16.86051578498044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Context: With the waning of Moore's Law, the software industry is placing increasing importance on finding alternative solutions for continuous performance enhancement. The significance and research results of software performance optimization have been on the rise in recent years, especially with the advancement propelled by Large Language Models(LLMs). However, traditional strategies for rectifying performance flaws have shown significant limitations at the competitive code efficiency optimization level, and research on this topic is surprisingly scarce. Objective: This study aims to address the research gap in this domain, offering practical solutions to the various challenges encountered. Specifically, we have overcome the constraints of traditional performance error rectification strategies and developed a Language Model (LM) tailored for the competitive code efficiency optimization realm. Method: We introduced E-code, an advanced program synthesis LM. Inspired by the recent success of expert LMs, we designed an innovative structure called the Expert Encoder Group. This structure employs multiple expert encoders to extract features tailored for different input types. We assessed the performance of E-code against other leading models on a competitive dataset and conducted in-depth ablation experiments. Results: Upon systematic evaluation, E-code achieved a 54.98% improvement in code efficiency, significantly outperforming other advanced models. In the ablation experiments, we further validated the significance of the expert encoder group and other components within E-code. Conclusion: The research findings indicate that the expert encoder group can effectively handle various inputs in efficiency optimization tasks, significantly enhancing the model's performance.
Related papers
- Optimizers Qualitatively Alter Solutions And We Should Leverage This [62.662640460717476]
Deep Neural Networks (DNNs) can not guarantee convergence to a unique global minimum of the loss when using only local information, such as SGD.<n>We argue that the community should aim at understanding the biases of already existing methods, as well as aim to build new DNNs with the explicit intent of inducing certain properties of the solution.
arXiv Detail & Related papers (2025-07-16T13:33:31Z) - ORMind: A Cognitive-Inspired End-to-End Reasoning Framework for Operations Research [53.736407871322314]
We introduce ORMind, a cognitive-inspired framework that enhances optimization through counterfactual reasoning.<n>Our approach emulates human cognition, implementing an end-to-end workflow that transforms requirements into mathematical models and executable code.<n>It is currently being tested internally in Lenovo's AI Assistant, with plans to enhance optimization capabilities for both business and consumer customers.
arXiv Detail & Related papers (2025-06-02T05:11:21Z) - Enhancing LLM Code Generation: A Systematic Evaluation of Multi-Agent Collaboration and Runtime Debugging for Improved Accuracy, Reliability, and Latency [0.0]
We study how different programming activities compositions and training paradigms influence code generation effectiveness.<n>Our findings provide valuable insights for organizations seeking robust AI-driven coding solutions.
arXiv Detail & Related papers (2025-05-04T14:44:27Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - SDPERL: A Framework for Software Defect Prediction Using Ensemble Feature Extraction and Reinforcement Learning [0.0]
This paper proposes an innovative framework for software defect prediction.
It combines ensemble feature extraction with reinforcement learning (RL)--based feature selection.
We claim that this work is among the first in recent efforts to address this challenge at the file-level granularity.
arXiv Detail & Related papers (2024-12-10T21:16:05Z) - Measuring Code Efficiency Optimization Capabilities with ACEOB [7.4056083791645495]
We conduct an in-depth analysis of "code patterns" in the model training dataset, meticulously exploring human-written code.
We introduce the Automatic Code Efficiency Optimization Benchmark (ACEOB), which consists of 95,359 pairs of efficient-inefficient code.
To our knowledge, ACEOB is the first dataset specifically targeting Python code efficiency optimization.
arXiv Detail & Related papers (2024-08-23T10:10:37Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark [39.13045037676502]
Development of large language models (LLMs) has significantly pushed the frontiers of program synthesis.
Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations.
We develop ENAMEL, a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code.
arXiv Detail & Related papers (2024-06-10T04:19:20Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
Large language models (LLMs) can serve as the assistant to help users accomplish their jobs, and also support the development of advanced applications.
For the wide application of LLMs, the inference efficiency is an essential concern, which has been widely studied in existing work.
We perform a detailed coarse-to-fine analysis of the inference performance of various code libraries.
arXiv Detail & Related papers (2024-04-17T15:57:50Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - PhaseEvo: Towards Unified In-Context Prompt Optimization for Large
Language Models [9.362082187605356]
We present PhaseEvo, an efficient automatic prompt optimization framework that combines the generative capability of LLMs with the global search proficiency of evolution algorithms.
PhaseEvo significantly outperforms the state-of-the-art baseline methods by a large margin whilst maintaining good efficiency.
arXiv Detail & Related papers (2024-02-17T17:47:10Z) - PerfRL: A Small Language Model Framework for Efficient Code Optimization [14.18092813639534]
In this paper, we introduce PerfRL, an innovative framework designed to tackle the problem of code optimization.
Our framework leverages the capabilities of small language models (SLMs) and reinforcement learning (RL)
Our approach achieves similar or better results compared to state-of-the-art models using shorter training times and smaller pre-trained models.
arXiv Detail & Related papers (2023-12-09T19:50:23Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z) - Robustified Learning for Online Optimization with Memory Costs [28.737193318136725]
We propose a novel expert-robustified learning (ERL) approach, achieving both good average performance and robustness.
For any $lambdageq1$, ERL can achieve $lambda$-competitive against the expert algorithm and $lambdacdot C$-competitive against the optimal offline algorithm.
arXiv Detail & Related papers (2023-05-01T06:12:01Z) - Learning Performance-Improving Code Edits [107.21538852090208]
We introduce a framework for adapting large language models (LLMs) to high-level program optimization.
First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs.
For prompting, we propose retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play.
arXiv Detail & Related papers (2023-02-15T18:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.