論文の概要: State-of-the-Art Fails in the Art of Damage Detection
- arxiv url: http://arxiv.org/abs/2408.12953v1
- Date: Fri, 23 Aug 2024 10:03:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:30:07.868857
- Title: State-of-the-Art Fails in the Art of Damage Detection
- Title(参考訳): 損傷検出技術の現状と課題
- Authors: Daniela Ivanova, Marco Aversa, Paul Henderson, John Williamson,
- Abstract要約: 教師付きトレーニングの後にも、機械学習モデルは損傷の場所を予測できないことを示す。
各種アナログメディアにおける損傷検出のためのデータセットであるDamBenchを紹介する。
- 参考スコア(独自算出の注目度): 5.6872893893453105
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurately detecting and classifying damage in analogue media such as paintings, photographs, textiles, mosaics, and frescoes is essential for cultural heritage preservation. While machine learning models excel in correcting global degradation if the damage operator is known a priori, we show that they fail to predict where the damage is even after supervised training; thus, reliable damage detection remains a challenge. We introduce DamBench, a dataset for damage detection in diverse analogue media, with over 11,000 annotations covering 15 damage types across various subjects and media. We evaluate CNN, Transformer, and text-guided diffusion segmentation models, revealing their limitations in generalising across media types.
- Abstract(参考訳): 絵画、写真、織物、モザイク、フレスコ画などの類似メディアの損傷を正確に検出・分類することは、文化遺産保存に不可欠である。
機械学習モデルは、損傷操作者が事前訓練を知っていれば、世界的劣化の補正に優れるが、教師付きトレーニング後にも損傷がどこにあるかを予測できないことが示される。
各種アナログメディアにおける損傷検出のためのデータセットであるDamBenchを紹介した。
CNN, Transformer, およびテキスト誘導拡散分割モデルを評価し, メディアタイプ間の一般化の限界を明らかにする。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - DeepDamageNet: A two-step deep-learning model for multi-disaster building damage segmentation and classification using satellite imagery [12.869300064524122]
本稿では, 損傷評価, セグメンテーション, 分類において, ディープラーニングモデルによる2つの重要な課題を遂行するソリューションを提案する。
我々の最良のモデルは、建物識別セマンティックセグメンテーション畳み込みニューラルネットワーク(CNN)と建物損傷分類CNNを組み合わせ、合計F1スコアは0.66である。
本モデルでは比較的精度の高い建物を同定することができたが,災害タイプによる被害の分類は困難であることが判明した。
論文 参考訳(メタデータ) (2024-05-08T04:21:03Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Simulating analogue film damage to analyse and improve artefact
restoration on high-resolution scans [10.871587311621974]
アナログ写真フィルムのデジタルスキャンは通常、ほこりやひっかきなどの人工物を含む。
ディープラーニングモデルは、一般的な画像の塗り絵や装飾において印象的な結果を示しているが、フィルムアーティファクトの除去は未研究の問題である。
トレーニングと評価のために、現実世界のアナログフィルム損傷の高品質なデータセットは公開されていない。
人手による手動復元版と組み合わせた4K損傷アナログフィルムスキャンのデータセットを収集する。
損傷画像の大規模合成データセットを, 実物形状の統計モデルと, 重損傷画像から学習した画像の出現モデルを用いて, ペア化されたクリーンバージョンで構築する。
論文 参考訳(メタデータ) (2023-02-20T14:24:18Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
近年のディープラーニング、特に深層生成モデルの発展により、知覚的に説得力のある画像や動画を低コストで制作するための扉が開かれた。
本稿では,現在のメディアタンパリング検出手法を概観し,今後の研究の課題と動向について論じる。
論文 参考訳(メタデータ) (2022-12-12T02:54:08Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
本研究は,人工知能(AI)と多視点画像を用いた,より信頼性の高い建築損傷分類を実現することを目的とする。
提案モデルでは, ハリケーン・ハーヴェイに続き, 調査対象の建物について, 専門家ラベル付きジオタグ付き画像を含む偵察視覚データセットを訓練し, 検証した。
論文 参考訳(メタデータ) (2022-08-06T01:04:13Z) - A hierarchical semantic segmentation framework for computer vision-based
bridge damage detection [3.7642333932730634]
遠隔カメラと無人航空機(UAV)を用いたコンピュータビジョンによる損傷検出は、効率的で低コストなブリッジの健康モニタリングを可能にする。
本稿では,コンポーネントカテゴリと損傷タイプ間の階層的意味関係を強制するセグメンテーションフレームワークを提案する。
このようにして、損傷検出モデルは、潜在的な損傷領域からのみ学習特徴に焦点をあてることができ、他の無関係領域の影響を避けることができる。
論文 参考訳(メタデータ) (2022-07-18T18:42:54Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
本稿では,再建に基づく機能を,新たな自己監督型予測アーキテクチャビルディングブロックに統合することを提案する。
我々のブロックは、受容領域におけるマスク領域に対する再構成誤差を最小限に抑える損失を備える。
画像やビデオの異常検出のための最先端フレームワークに組み込むことで,ブロックの汎用性を実証する。
論文 参考訳(メタデータ) (2021-11-17T13:30:31Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - Stereopagnosia: Fooling Stereo Networks with Adversarial Perturbations [71.00754846434744]
知覚不能な加法的摂動は,差分マップを著しく変更できることを示す。
敵データ拡張に使用すると、我々の摂動はより堅牢なトレーニングされたモデルをもたらすことを示す。
論文 参考訳(メタデータ) (2020-09-21T19:20:09Z) - Per-pixel Classification Rebar Exposures in Bridge Eye-inspection [0.0]
低画素画像のセマンティックセグメンテーションを可能にするトランスファー学習の3つの損傷検出手法を提案する。
本稿では,実世界の橋梁106面の208枚の残響画像を用いた結果について述べる。
論文 参考訳(メタデータ) (2020-04-22T17:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。