論文の概要: A Web-Based Solution for Federated Learning with LLM-Based Automation
- arxiv url: http://arxiv.org/abs/2408.13010v1
- Date: Fri, 23 Aug 2024 11:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:10:31.037697
- Title: A Web-Based Solution for Federated Learning with LLM-Based Automation
- Title(参考訳): LLM自動化によるフェデレーション学習のためのWebベースソリューション
- Authors: Chamith Mawela, Chaouki Ben Issaid, Mehdi Bennis,
- Abstract要約: フェデレートラーニング(FL)は、分散デバイス間で協調的な機械学習に有望なアプローチを提供する。
我々は,フェデレート平均化(FedAvg)アルゴリズムをサポートするユーザフレンドリーなWebアプリケーションを開発した。
FLにおける意図に基づく自動化を、カスタマイズされたデータセットで訓練された微調整言語モデル(LLM)を用いて検討する。
- 参考スコア(独自算出の注目度): 34.756818299081736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) offers a promising approach for collaborative machine learning across distributed devices. However, its adoption is hindered by the complexity of building reliable communication architectures and the need for expertise in both machine learning and network programming. This paper presents a comprehensive solution that simplifies the orchestration of FL tasks while integrating intent-based automation. We develop a user-friendly web application supporting the federated averaging (FedAvg) algorithm, enabling users to configure parameters through an intuitive interface. The backend solution efficiently manages communication between the parameter server and edge nodes. We also implement model compression and scheduling algorithms to optimize FL performance. Furthermore, we explore intent-based automation in FL using a fine-tuned Language Model (LLM) trained on a tailored dataset, allowing users to conduct FL tasks using high-level prompts. We observe that the LLM-based automated solution achieves comparable test accuracy to the standard web-based solution while reducing transferred bytes by up to 64% and CPU time by up to 46% for FL tasks. Also, we leverage the neural architecture search (NAS) and hyperparameter optimization (HPO) using LLM to improve the performance. We observe that by using this approach test accuracy can be improved by 10-20% for the carried out FL tasks.
- Abstract(参考訳): フェデレートラーニング(FL)は、分散デバイス間で協調的な機械学習に有望なアプローチを提供する。
しかし、その採用は、信頼性の高い通信アーキテクチャの構築の複雑さと、機械学習とネットワークプログラミングの両方の専門知識の必要性によって妨げられている。
本稿では、意図に基づく自動化を統合しつつ、FLタスクのオーケストレーションを簡単にする包括的ソリューションを提案する。
我々は,FedAvg(Federated Averaging)アルゴリズムをサポートするユーザフレンドリーなWebアプリケーションを開発した。
バックエンドソリューションは、パラメータサーバとエッジノード間の通信を効率的に管理する。
また、FL性能を最適化するためにモデル圧縮とスケジューリングアルゴリズムを実装した。
さらに、カスタマイズされたデータセットに基づいて訓練された微調整言語モデル(LLM)を用いて、FLにおける意図に基づく自動化について検討し、高いレベルのプロンプトを用いてFLタスクを実行できるようにする。
LLMベースの自動化ソリューションは、標準的なWebベースソリューションに匹敵するテスト精度を達成し、転送バイトを最大64%削減し、FLタスクのCPU時間を最大46%削減する。
また、LLMを用いたニューラルアーキテクチャサーチ(NAS)とハイパーパラメータ最適化(HPO)を活用して性能を向上する。
本研究では,本手法を用いることで,FLタスクの精度を10~20%向上できることを示す。
関連論文リスト
- SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: 計算オーバーヘッドの少ないスパースモデル構造を最適化する通信効率のよいFLフレームワークを提案する。
実験により、スパースベースラインに比べて通信やコンピューティングリソースをはるかに少なくし、精度を向上することが示された。
論文 参考訳(メタデータ) (2024-06-01T13:10:35Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
フェデレートラーニング(FL)がIoT(Internet of Things)で大人気
FLrceは、関係ベースのクライアント選択と早期停止戦略を備えた効率的なFLフレームワークである。
その結果,既存のFLフレームワークと比較してFLrceは計算効率を少なくとも30%,通信効率を43%向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-15T10:13:44Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
本稿では,最新のエッジコンピューティングシステムにおいて,Large Language Modelsをどのように導入できるかを,ハードウェア中心のアプローチで検討する。
マイクロレベルのハードウェアベンチマークを行い、FLOPモデルと最先端のデータセンターGPUを比較し、現実的な条件下でのネットワーク利用について検討する。
論文 参考訳(メタデータ) (2023-10-04T20:27:20Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - Federated Learning with Flexible Control [30.65854375019346]
フェデレートラーニング(FL)は、ユーザが収集したローカルデータから分散モデルトレーニングを可能にする。
制約のあるリソースと潜在的に高いダイナミクスを持つ分散システムでは、例えばモバイルエッジネットワークでは、FLの効率が重要な問題である。
フレキシブルに調整可能な複数のオプションを持つFLアルゴリズムであるFlexFLを提案する。
論文 参考訳(メタデータ) (2022-12-16T14:21:29Z) - A Multi-agent Reinforcement Learning Approach for Efficient Client
Selection in Federated Learning [17.55163940659976]
Federated Learning(FL)は、クライアントデバイスが共有モデルを共同で学習することを可能にするトレーニングテクニックである。
モデル精度、処理遅延、通信効率を協調的に最適化する効率的なFLフレームワークを設計する。
実験により、FedMarlは処理遅延と通信コストを大幅に削減して、モデルの精度を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2022-01-09T05:55:17Z) - FedFog: Network-Aware Optimization of Federated Learning over Wireless
Fog-Cloud Systems [40.421253127588244]
フェデレートラーニング(FL)は、訓練されたローカルパラメータを定期的に集約することで、複数のエッジユーザにわたって大規模な分散機械学習タスクを実行することができる。
まず,フォグサーバにおける勾配パラメータの局所的な集約と,クラウドでのグローバルトレーニング更新を行うための効率的なFLアルゴリズム(FedFog)を提案する。
論文 参考訳(メタデータ) (2021-07-04T08:03:15Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
無線通信ネットワーク上でのフェデレーション学習(FL)における遅延計算の問題について検討した。
最適解を得るために,二項探索アルゴリズムを提案する。
シミュレーションの結果,提案アルゴリズムは従来のFL法と比較して最大27.3%遅延を低減できることがわかった。
論文 参考訳(メタデータ) (2020-07-05T19:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。