Speakable and unspeakable in quantum measurements
- URL: http://arxiv.org/abs/2408.13023v1
- Date: Fri, 23 Aug 2024 12:24:18 GMT
- Title: Speakable and unspeakable in quantum measurements
- Authors: D. Sokolovski, D. Alonso, S. Brouard,
- Abstract summary: A new approach, based on so-called "weak measurements", suggests that such forbidden knowledge can be gained by studying the system's response to an inaccurate weakly perturbing device.
It goes further to propose revising the whole concept of physics variables, and offers various examples of counterintuitive quantum behaviour.
A new technique must either transcend the orthodox limits, or just prove that these limits are indeed necessary.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum mechanics, in its orthodox version, imposes severe limits on what can be known, or even said, about the condition of a quantum system between two observations. A relatively new approach, based on so-called "weak measurements", suggests that such forbidden knowledge can be gained by studying the system's response to an inaccurate weakly perturbing measuring device. It goes further to propose revising the whole concept of physics variables, and offers various examples of counterintuitive quantum behaviour. Both views go to the very heart of quantum theory, and yet are rarely compared directly. A new technique must either transcend the orthodox limits, or just prove that these limits are indeed necessary. We study both possibilities, and find for the orthodoxy.
Related papers
- Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Everything is Entangled in Quantum Mechanics: Are the Orthodox Measures Physically Meaningful? [0.0]
We will argue that this new line of research is capable not only to evade the many open problems which appear within the mainstream literature, but is also able to present a consistent and coherent physical understanding of entanglement.
arXiv Detail & Related papers (2024-05-09T13:22:10Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Measurement and Probability in Relativistic Quantum Mechanics [0.0]
This paper provides a relativistic model of measurement, in which the state of the universe is decomposed into decoherent histories of measurements recorded within it.
The wave functions that we actually use for such experiments are local reductions of very coarse-grained superpositions of universal eigenstates.
arXiv Detail & Related papers (2022-09-26T04:21:52Z) - Certified Quantumness via Single-Shot Temporal Measurements [0.0]
Bell-Kochen-Specker theorem states that a non-contextual hidden- variable theory cannot reproduce predictions of quantum mechanics.
Asher Peres gave a simple proof of quantum contextuality in a four-dimensional Hilbert space of two spin-1/2 particles.
We present a similar proof in time with a temporal version of the Peres-like argument.
arXiv Detail & Related papers (2022-06-06T12:42:32Z) - Quantum tomography explains quantum mechanics [0.0]
A suggestive notion for what constitutes a quantum detector leads to a logically impeccable definition of measurement.
The various forms of quantum tomography for quantum states, quantum detectors, quantum processes, and quantum instruments are discussed.
The new approach is closer to actual practice than the traditional foundations.
arXiv Detail & Related papers (2021-10-11T14:09:30Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.