論文の概要: cc-DRL: a Convex Combined Deep Reinforcement Learning Flight Control Design for a Morphing Quadrotor
- arxiv url: http://arxiv.org/abs/2408.13054v1
- Date: Fri, 23 Aug 2024 13:25:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:00:47.019176
- Title: cc-DRL: a Convex Combined Deep Reinforcement Learning Flight Control Design for a Morphing Quadrotor
- Title(参考訳): cc-DRL:モーフィング擬似翼の深部強化学習飛行制御設計
- Authors: Tao Yang, Huai-Ning Wu, Jun-Wei Wang,
- Abstract要約: 本稿では,モーフィング・クオーターのクラスの位置と姿勢に対する凸結合型DRL(cc-DRL)飛行制御アルゴリズムを提案する。
提案したcc-DRL飛行制御アルゴリズムでは、モデルフリーのDRLアルゴリズムであるポリシー最適化アルゴリズムを用いて、対応する最適飛行制御法をオフラインで訓練する。
- 参考スコア(独自算出の注目度): 21.91709809193641
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In comparison to common quadrotors, the shape change of morphing quadrotors endows it with a more better flight performance but also results in more complex flight dynamics. Generally, it is extremely difficult or even impossible for morphing quadrotors to establish an accurate mathematical model describing their complex flight dynamics. To figure out the issue of flight control design for morphing quadrotors, this paper resorts to a combination of model-free control techniques (e.g., deep reinforcement learning, DRL) and convex combination (CC) technique, and proposes a convex-combined-DRL (cc-DRL) flight control algorithm for position and attitude of a class of morphing quadrotors, where the shape change is realized by the length variation of four arm rods. In the proposed cc-DRL flight control algorithm, proximal policy optimization algorithm that is a model-free DRL algorithm is utilized to off-line train the corresponding optimal flight control laws for some selected representative arm length modes and hereby a cc-DRL flight control scheme is constructed by the convex combination technique. Finally, simulation results are presented to show the effectiveness and merit of the proposed flight control algorithm.
- Abstract(参考訳): 一般的な四重奏法と比較して、モーフィング四重奏法の形状変化は、より優れた飛行性能を持つが、より複雑な飛行力学をもたらす。
一般に、これらの複雑な飛行力学を記述する正確な数学的モデルを確立するのは非常に困難または不可能である。
そこで本研究では, モデルフリー制御技術(例えば, 深部強化学習, DRL)と凸結合(CC)技術を組み合わせて, 4本のアームロッドの長さ変化によって形状変化が生じるモーフィング四脚のクラスの位置と姿勢に対する凸結合型DRL(cc-DRL)飛行制御アルゴリズムを提案する。
提案したcc-DRL飛行制御アルゴリズムでは、モデルフリーのDRLアルゴリズムである近似ポリシー最適化アルゴリズムを用いて、選択された代表アーム長モードの最適飛行制御法をオフラインで訓練し、凸結合法によりcc-DRL飛行制御スキームを構築する。
最後に,提案した飛行制御アルゴリズムの有効性と有用性を示すシミュレーション結果を示す。
関連論文リスト
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
論文 参考訳(メタデータ) (2024-07-18T02:46:06Z) - Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
本稿では、自動運転車における強化学習(RL)ソリューションの性能向上の問題に対処する。
計画タスクと制御タスクを分離する部分的なエンドツーエンドアルゴリズムを提案する。
従来の制御器のロバスト性を活用することにより,本アルゴリズムは標準のエンドツーエンドアルゴリズムよりもモデルミスマッチに対するロバスト性を向上する。
論文 参考訳(メタデータ) (2023-12-11T14:27:10Z) - Active flow control for three-dimensional cylinders through deep
reinforcement learning [0.0]
本稿では,複数のゼロネット・マス・フラックス合成ジェットを用いたアクティブフロー制御の初回成功例を示す。
ジェットは、ドラッグ係数を低減するために、そのスパンに沿って三次元のシリンダー上に配置される。
この手法は,計算流体力学解法とエージェントを結合した深層強化学習フレームワークに基づいている。
論文 参考訳(メタデータ) (2023-09-04T13:30:29Z) - Robust optimal well control using an adaptive multi-grid reinforcement
learning framework [0.0]
強化学習は、堅牢な最適ウェルコントロール問題を解決するための有望なツールである。
提案するフレームワークは、最先端のモデルフリーポリシーベースのRLアルゴリズムを用いて実証される。
計算効率の顕著な向上は,提案したフレームワークを用いて,1つのファイングリッドの計算コストの約60~70%を削減した。
論文 参考訳(メタデータ) (2022-07-07T12:08:57Z) - Comparative analysis of machine learning methods for active flow control [60.53767050487434]
遺伝的プログラミング(GP)と強化学習(RL)はフロー制御において人気を集めている。
この研究は2つの比較分析を行い、地球規模の最適化手法に対して最も代表的なアルゴリズムのいくつかをベンチマークする。
論文 参考訳(メタデータ) (2022-02-23T18:11:19Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
MPCのためのポリシ・フォー・モデル・予測制御フレームワークを提案する。
具体的には、パラメータ化コントローラとしてMPCを定式化し、パラメータ化の難しい決定変数を高レベルポリシーとして表現する。
シミュレーションと実環境の両方において,我々の制御器が堅牢かつリアルタイムに制御性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2021-12-07T17:39:24Z) - Finite-time System Identification and Adaptive Control in Autoregressive
Exogenous Systems [79.67879934935661]
未知のARXシステムのシステム識別と適応制御の問題について検討する。
我々は,オープンループとクローズループの両方のデータ収集の下で,ARXシステムに対する有限時間学習保証を提供する。
論文 参考訳(メタデータ) (2021-08-26T18:00:00Z) - Meta-Learning-Based Robust Adaptive Flight Control Under Uncertain Wind
Conditions [13.00214468719929]
リアルタイムモデル学習は、さまざまな風条件で飛行するドローンなどの複雑なダイナミクスシステムにとって困難です。
本稿では,ディープニューラルネットワークからの出力を基本関数の集合として扱うオンライン複合適応手法を提案する。
我々は,風条件の異なる空洞でドローンを飛ばし,挑戦的な軌道を飛行させることにより,我々のアプローチを検証する。
論文 参考訳(メタデータ) (2021-03-02T18:43:59Z) - Collision-Free Flocking with a Dynamic Squad of Fixed-Wing UAVs Using
Deep Reinforcement Learning [2.555094847583209]
深層強化学習(DRL)による分散型リーダ・フォロワリング制御問題に対処する。
我々は,すべてのフォロワーに対して共有制御ポリシーを学習するための新しい強化学習アルゴリズムCACER-IIを提案する。
その結果、可変長系状態を固定長埋め込みベクトルに符号化することができ、学習されたDRLポリシーをフォロワーの数や順序と独立にすることができる。
論文 参考訳(メタデータ) (2021-01-20T11:23:35Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。