論文の概要: Exploiting Formal Concept Analysis for Data Modeling in Data Lakes
- arxiv url: http://arxiv.org/abs/2408.13265v1
- Date: Sun, 11 Aug 2024 13:58:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 17:02:13.101263
- Title: Exploiting Formal Concept Analysis for Data Modeling in Data Lakes
- Title(参考訳): データレイクにおけるデータモデリングのための形式的概念解析の爆発的展開
- Authors: Anes Bendimerad, Romain Mathonat, Youcef Remil, Mehdi Kaytoue,
- Abstract要約: 本稿では,形式的概念分析(FCA)に根ざした実用的なデータ可視化と分析手法を提案する。
データ構造をオブジェクトとして表現し、概念格子を分析し、これらの構造を統一し共通のスキーマを確立するための2つの戦略を提示します。
私たちは、34の異なるフィールド名しか持たない、80%のデータ構造を完全にカバーしています。
- 参考スコア(独自算出の注目度): 0.29998889086656577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data lakes are widely used to store extensive and heterogeneous datasets for advanced analytics. However, the unstructured nature of data in these repositories introduces complexities in exploiting them and extracting meaningful insights. This motivates the need of exploring efficient approaches for consolidating data lakes and deriving a common and unified schema. This paper introduces a practical data visualization and analysis approach rooted in Formal Concept Analysis (FCA) to systematically clean, organize, and design data structures within a data lake. We explore diverse data structures stored in our data lake at Infologic, including InfluxDB measurements and Elasticsearch indexes, aiming to derive conventions for a more accessible data model. Leveraging FCA, we represent data structures as objects, analyze the concept lattice, and present two strategies-top-down and bottom-up-to unify these structures and establish a common schema. Our methodology yields significant results, enabling the identification of common concepts in the data structures, such as resources along with their underlying shared fields (timestamp, type, usedRatio, etc.). Moreover, the number of distinct data structure field names is reduced by 54 percent (from 190 to 88) in the studied subset of our data lake. We achieve a complete coverage of 80 percent of data structures with only 34 distinct field names, a significant improvement from the initial 121 field names that were needed to reach such coverage. The paper provides insights into the Infologic ecosystem, problem formulation, exploration strategies, and presents both qualitative and quantitative results.
- Abstract(参考訳): データレイクは、高度な分析のために広範囲で異質なデータセットを保存するために広く使用されている。
しかし、これらのリポジトリにおけるデータの非構造化の性質は、それらを悪用し、意味のある洞察を抽出する複雑さをもたらす。
これは、データレイクの統合と共通かつ統一されたスキーマの導出のための効率的なアプローチを探求する必要性を動機付けている。
本稿では,データレイク内のデータ構造を体系的に整理し,整理し,設計するために,FCA(Formal Concept Analysis)に根ざした実用的なデータ可視化分析手法を提案する。
Infologicalでは,InfluxDB測定やElasticsearchインデックスなど,データレイクに格納されているさまざまなデータ構造を調査し,よりアクセスしやすいデータモデルのための規約の導出を目指しています。
FCAを利用することで、データ構造をオブジェクトとして表現し、概念格子を分析し、これらの構造を統一し共通のスキーマを確立するために、トップダウンとボトムアップの2つの戦略を提示します。
提案手法は,データ構造における共通概念,例えばリソースと,その基盤となる共有フィールド(タイムスタンプ,型,useRatioなど)の識別を可能にする。
さらに,本研究データレイクのサブセットにおいて,異なるデータ構造体の名称を54%(190から88まで)削減した。
我々は、34の異なるフィールド名を持つデータ構造の80%を網羅し、そのようなカバー範囲に達するために必要な最初の121フィールド名から大幅に改善した。
本論文は, 生態系, 問題定式化, 探索戦略に関する知見を提供し, 質的および定量的な結果を提示する。
関連論文リスト
- ClusterGraph: a new tool for visualization and compression of multidimensional data [0.0]
本稿では,任意のクラスタリングアルゴリズムの出力に付加的なレイヤを提供する。
クラスタリングアルゴリズムから得られたクラスタのグローバルなレイアウトに関する情報を提供する。
論文 参考訳(メタデータ) (2024-11-08T09:40:54Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study [4.742245127121496]
Structured-GraphRAGは自然言語クエリにおける構造化データセット間の情報検索を強化するために設計された汎用フレームワークである。
その結果,Structured-GraphRAGはクエリ処理効率を大幅に改善し,応答時間を短縮することがわかった。
論文 参考訳(メタデータ) (2024-09-26T06:53:29Z) - Big data searching using words [0.0]
データ検索における単語の近傍構造に関する基本的な考え方を紹介する。
また、ビッグデータ検索におけるビッグデータプライマリを導入し、データ検索における異常検出における近傍構造の適用について論じる。
論文 参考訳(メタデータ) (2024-09-10T13:46:14Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - Cross Modal Data Discovery over Structured and Unstructured Data Lakes [5.270224494298927]
組織はデータ駆動意思決定のために、ますます大量のデータを集めています。
これらのデータは、数千の構造化データセットと非構造化データセットからなる集中型リポジトリにダンプされることが多い。
逆に、そのようなデータセットの混合は、ユーザのクエリや分析タスクに関連する要素を発見することを非常に困難にしている。
論文 参考訳(メタデータ) (2023-06-01T17:34:42Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - CateCom: a practical data-centric approach to categorization of
computational models [77.34726150561087]
本稿では,物理モデルとデータ駆動型計算モデルのランドスケープを整理する取り組みについて述べる。
オブジェクト指向設計の概念を適用し、オープンソース協調フレームワークの基礎を概説する。
論文 参考訳(メタデータ) (2021-09-28T02:59:40Z) - Joint Geometric and Topological Analysis of Hierarchical Datasets [7.098759778181621]
本稿では,複数の階層的データセットに整理された高次元データに注目する。
この研究の主な新規性は、トポロジカルデータ分析と幾何多様体学習という、2つの強力なデータ分析アプローチの組み合わせにある。
本手法は, 最新手法と比較して優れた分類結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-04-03T13:02:00Z) - Simple multi-dataset detection [83.9604523643406]
複数の大規模データセット上で統合検出器を訓練する簡単な方法を提案する。
データセット固有のアウトプットを共通の意味分類に自動的に統合する方法を示す。
私たちのアプローチは手動の分類学の調整を必要としません。
論文 参考訳(メタデータ) (2021-02-25T18:55:58Z) - Mapping Patterns for Virtual Knowledge Graphs [71.61234136161742]
仮想知識グラフ(VKG)は、レガシーデータソースの統合とアクセスのための最も有望なパラダイムの1つである。
データ管理、データ分析、概念モデリングにおいて研究された、確立された方法論とパターンに基づいて構築する。
検討されたVKGシナリオに基づいて,私たちのカタログを検証し,そのパターンの大部分をカバーすることを示す。
論文 参考訳(メタデータ) (2020-12-03T13:54:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。