Quantized Embedding Approaches for Collective Strong Coupling -- Connecting ab initio and macroscopic QED to Simple Models in Polaritonics
- URL: http://arxiv.org/abs/2408.13570v1
- Date: Sat, 24 Aug 2024 12:50:10 GMT
- Title: Quantized Embedding Approaches for Collective Strong Coupling -- Connecting ab initio and macroscopic QED to Simple Models in Polaritonics
- Authors: Frieder Lindel, Dominik Lentrodt, Stefan Yoshi Buhmann, Christian Schäfer,
- Abstract summary: We introduce an accessible ab initio quantum embedding concept for many-body quantum optical systems.
Our approach fully includes the quantum fluctuations of the polaritonic field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collective light-matter interactions have been used to control chemistry and energy transfer, yet accessible approaches that combine ab initio methodology with large many-body quantum optical systems are missing due to the fast increase in computational cost for explicit simulations. We introduce an accessible ab initio quantum embedding concept for many-body quantum optical systems that allows to treat the collective coupling of molecular many-body systems effectively in the spirit of macroscopic QED while keeping the rigor of ab initio quantum chemistry for the molecular structure. Our approach fully includes the quantum fluctuations of the polaritonic field and yet remains much simpler and more intuitive than complex embedding approaches such as dynamical mean-field theory. We illustrate the underlying assumptions by comparison to the Tavis--Cummings model. The intuitive application of the quantized embedding approach and its transparent limitations offer a practical framework for the field of ab initio polaritonic chemistry to describe collective effects in realistic molecular ensembles.
Related papers
- Photon-mediated interactions and dynamics of coherently driven quantum emitters in complex photonic environments [41.94295877935867]
Born-Markov master equations have been extensively employed in the description of quantum optical phenomena.<n>We benchmark this modeling approach for the quantum dynamics of the emitter pair against exact calculations based on a macroscopic field quantization formalism.<n>Our analysis reveals four distinct regimes of laser driving and frequency splitting that lead to markedly different levels of accuracy in the effective model.
arXiv Detail & Related papers (2025-08-01T09:38:07Z) - Programmable Exploration of Magnetic States in Lieb-Kagome Interpolated Lattices [44.99833362998488]
A quantum annealer is used to simulate magnetic interactions in molecular qubit lattices inspired by experimentally realizable systems.<n>The annealer provides access to observables such as the static structure factor and magnetization over a wide parameter space.<n>This framework defines a modular and scalable paradigm for probing the limits of engineered quantum matter across chemistry, condensed matter, and quantum information science.
arXiv Detail & Related papers (2025-07-24T21:47:54Z) - Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Quantum correlations in molecular cavity optomechanics [0.0]
We unveil a theoretical framework for generating and controlling vital quantum phenomena within a double-cavity molecular optomechanical system.<n>Our findings reveal that judiciously optimizing the coupling strength between the cavity field and the molecular collective mode leads to a remarkable enhancement of entanglement, quantum steering, and quantum discord.<n>We demonstrate that cavity-cavity quantum correlations can be effectively mediated by the molecular collective mode, enabling a unique pathway for inter-cavity quantum connectivity.
arXiv Detail & Related papers (2025-06-08T20:35:12Z) - Auxiliary Field Quantum Monte Carlo for Electron-Photon Correlation [3.8065968624597324]
Hybrid light-matter polaritonic states have shown great promise for altering already known and enabling novel chemical reactions.<n> ab initio modeling of such polaritonic phenomena has led to updating commonly used electronic structure methods.
arXiv Detail & Related papers (2025-05-21T21:10:49Z) - Multireference Embedding and Fragmentation Methods for Classical and Quantum Computers: from Model Systems to Realistic Applications [0.0]
Quantum embedding offers a promising solution by partitioning complex systems into manageable subsystems.<n>We discuss both classical implementations and the emerging potential of these methods on quantum computers.
arXiv Detail & Related papers (2025-05-19T17:33:53Z) - Predictive simulations of the dynamical response of mesoscopic devices [0.0]
We describe a general framework to simulate the low-energy quantum dynamics of such complex systems.
We demonstrate the methods introduced in this paper on the example of a single quantum dot coupled to a topological superconductor.
arXiv Detail & Related papers (2025-02-18T15:44:40Z) - Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Simulating Chemistry with Fermionic Optical Superlattices [2.7521403951088934]
We show that quantum number preserving Ans"atze for variational optimization in quantum chemistry find an elegant mapping to ultracold fermions in optical superlattices.
Trial ground states for arbitrary molecular Hamiltonians can be prepared and their molecular energies measured in the lattice.
arXiv Detail & Related papers (2024-09-09T14:35:55Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic
Quantum Dynamics [17.514476953380125]
Nonadiabatic dynamical processes are important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems.
The mapping Hamiltonian on phase space coupled F-state systems is a special case.
An isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes is presented.
arXiv Detail & Related papers (2022-05-23T14:40:22Z) - Tailoring the degree of entanglement of two coherently coupled quantum
emitters [0.0]
Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
arXiv Detail & Related papers (2021-09-22T08:30:59Z) - Bioinspired molecular qubits and nanoparticle ensembles that could be
initialized, manipulated and readout under mild conditions [17.257388144832426]
We report a new type of molecular qubits and nanoparticles based on thermally controllable transformation between J-aggregation and monomeric states of molecular chromophores.
Such supramolecular quantum systems, resembling some feature of light harvesting complexes in photosynthesis, provide new opportunities for manipulating quantum in-formation under mild conditions.
arXiv Detail & Related papers (2021-07-14T13:18:01Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Digital quantum simulation of molecular dynamics and control [0.0]
We study how quantum computers could be employed to design optimally-shaped fields to control molecular systems.
We introduce a hybrid algorithm that utilizes a quantum computer for simulating the field-induced quantum dynamics of a molecular system in time.
Numerical illustrations are then presented that explicitly treat paradigmatic vibrational and rotational control problems.
arXiv Detail & Related papers (2020-02-28T00:45:56Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.