論文の概要: Self-Parameterization Based Multi-Resolution Mesh Convolution Networks
- arxiv url: http://arxiv.org/abs/2408.13762v1
- Date: Sun, 25 Aug 2024 08:11:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:00:02.879693
- Title: Self-Parameterization Based Multi-Resolution Mesh Convolution Networks
- Title(参考訳): 自己パラメータ化に基づくマルチリゾリューションメッシュ畳み込みネットワーク
- Authors: Shi Hezi, Jiang Luo, Zheng Jianmin, Zeng Jun,
- Abstract要約: 本稿では,メッシュ畳み込みニューラルネットワークを3次元メッシュ密度予測のために設計する際の課題について述べる。
まず、高分解能入力データから直接多分解能メッシュピラミッドを構築する。
第二に、マルチ解像度畳み込みネットワークにおける高分解能表現を維持し、マルチスケールの融合を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the challenges of designing mesh convolution neural networks for 3D mesh dense prediction. While deep learning has achieved remarkable success in image dense prediction tasks, directly applying or extending these methods to irregular graph data, such as 3D surface meshes, is nontrivial due to the non-uniform element distribution and irregular connectivity in surface meshes which make it difficult to adapt downsampling, upsampling, and convolution operations. In addition, commonly used multiresolution networks require repeated high-to-low and then low-to-high processes to boost the performance of recovering rich, high-resolution representations. To address these challenges, this paper proposes a self-parameterization-based multi-resolution convolution network that extends existing image dense prediction architectures to 3D meshes. The novelty of our approach lies in two key aspects. First, we construct a multi-resolution mesh pyramid directly from the high-resolution input data and propose area-aware mesh downsampling/upsampling operations that use sequential bijective inter-surface mappings between different mesh resolutions. The inter-surface mapping redefines the mesh, rather than reshaping it, which thus avoids introducing unnecessary errors. Second, we maintain the high-resolution representation in the multi-resolution convolution network, enabling multi-scale fusions to exchange information across parallel multi-resolution subnetworks, rather than through connections of high-to-low resolution subnetworks in series. These features differentiate our approach from most existing mesh convolution networks and enable more accurate mesh dense predictions, which is confirmed in experiments.
- Abstract(参考訳): 本稿では,メッシュ畳み込みニューラルネットワークを3次元メッシュ密度予測のために設計する際の課題について述べる。
深層学習は画像密度予測タスクにおいて顕著な成功を収めてきたが、3次元表面メッシュのような不規則なグラフデータにこれらの手法を直接適用または拡張することは、非一様要素分布と表面メッシュにおける不規則な接続により、ダウンサンプリング、アップサンプリング、畳み込み操作の適応が困難になるため、非自明である。
さらに、一般的に使用されるマルチレゾリューションネットワークは、リッチで高解像度な表現を復元する性能を高めるために、ハイ・ツー・ロー・ハイ・プロセスを繰り返し行う必要がある。
これらの課題に対処するために,既存の画像密度予測アーキテクチャを3次元メッシュに拡張する,自己パラメータ化に基づくマルチレゾリューション畳み込みネットワークを提案する。
私たちのアプローチの斬新さは2つの重要な側面にあります。
まず、高分解能入力データから直接多分解能メッシュピラミッドを構築し、異なるメッシュ解像度間の連続的な物体間マッピングを用いた領域認識メッシュダウンサンプリング/アップサンプリング操作を提案する。
表面マッピングはメッシュを再定義する代わりにメッシュを再定義するので、不要なエラーを発生させない。
第2に,多分解能畳み込みネットワークにおける高分解能表現を維持し,並列多分解能サブネットワーク間の情報交換を,高分解能サブネットワークの接続を連続的に行うのではなく,多分解能サブネットワーク間の情報交換を可能にする。
これらの特徴は、我々のアプローチを既存のメッシュ畳み込みネットワークと区別し、より正確なメッシュ密度予測を可能にし、実験で確認されている。
関連論文リスト
- Double-Shot 3D Shape Measurement with a Dual-Branch Network [14.749887303860717]
我々は、異なる構造光(SL)変調を処理するために、デュアルブランチ畳み込みニューラルネットワーク(CNN)-トランスフォーマーネットワーク(PDCNet)を提案する。
PDCNet内では、Transformerブランチを使用してフリンジイメージのグローバルな認識をキャプチャし、CNNブランチはスペックルイメージのローカル詳細を収集するように設計されている。
提案手法は, 自己生成データセット上で高精度な結果が得られる一方で, フランジオーダーの曖昧さを低減できることを示す。
論文 参考訳(メタデータ) (2024-07-19T10:49:26Z) - GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
本研究は,多忠実度アプリケーションのための新しい分解能不変モデルオーダー削減戦略を提案する。
我々はこの研究で開発された新しいニューラルネットワーク層、グラフフィードフォワードネットワークに基づいてアーキテクチャを構築した。
パラメトリックな偏微分方程式に対する自己エンコーダに基づく還元戦略において,異なるメッシュサイズでのトレーニングとテストの能力を利用する。
論文 参考訳(メタデータ) (2024-06-05T18:31:37Z) - Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
Voxel-based Network (textbfPU-VoxelNet) を用いた任意のスケールのクラウド・アップサンプリング・フレームワークを提案する。
ボクセル表現から継承された完全性と規則性により、ボクセルベースのネットワークは3次元表面を近似する事前定義されたグリッド空間を提供することができる。
密度誘導グリッド再サンプリング法を開発し、高忠実度点を生成するとともに、サンプリング出力を効果的に回避する。
論文 参考訳(メタデータ) (2024-03-08T07:31:14Z) - On Optimizing the Communication of Model Parallelism [74.15423270435949]
大規模モデル並列ディープラーニング(DL)における新しい重要なコミュニケーションパターンについて検討する。
クロスメッシュリシャーディングでは、シャードテンソルをソースデバイスメッシュから宛先デバイスメッシュに送信する必要がある。
本稿では、効率的な放送ベースの通信システムと「重複しやすい」パイプラインスケジュールという、クロスメシュ・リシャーディングに対処するための2つのコントリビューションを提案する。
論文 参考訳(メタデータ) (2022-11-10T03:56:48Z) - Pyramid Grafting Network for One-Stage High Resolution Saliency
Detection [29.013012579688347]
我々は、異なる解像度画像から特徴を独立して抽出する、Praamid Grafting Network (PGNet) と呼ばれるワンステージフレームワークを提案する。
CNNブランチが壊れた詳細情報をよりホモロジーに組み合わせられるように、アテンションベースのクロスモデルグラフティングモジュール (CMGM) が提案されている。
我々は,4K-8K解像度で5,920個の画像を含む超高分解能塩度検出データセットUHRSDを新たに提供した。
論文 参考訳(メタデータ) (2022-04-11T12:22:21Z) - Laplacian2Mesh: Laplacian-Based Mesh Understanding [4.808061174740482]
我々は3次元トライアングルメッシュのための新しいフレキシブル畳み込みニューラルネットワーク(CNN)モデルであるLaplacian2Meshを紹介した。
メッシュプーリングはラプラシアンの多空間変換によりネットワークの受容場を拡張するために適用される。
3Dメッシュに適用されたさまざまな学習タスクの実験は、Laplacian2Meshの有効性と効率を実証している。
論文 参考訳(メタデータ) (2022-02-01T10:10:13Z) - LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution
Homography Estimation [52.63874513999119]
クロスレゾリューション画像アライメントは、マルチスケールギガ撮影において重要な問題である。
既存のディープ・ホモグラフィー手法は、それらの間の対応の明示的な定式化を無視し、クロスレゾリューションの課題において精度が低下する。
本稿では,マルチモーダル入力間の対応性を明確に学習するために,マルチスケール構造内に埋め込まれたローカルトランスフォーマーネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-08T02:51:45Z) - Recurrent Multi-view Alignment Network for Unsupervised Surface
Registration [79.72086524370819]
非厳格な登録をエンドツーエンドで学習することは、本質的に高い自由度とラベル付きトレーニングデータの欠如により困難である。
我々は、いくつかの剛性変換のポイントワイドな組み合わせで、非剛性変換を表現することを提案する。
また,投影された多視点2次元深度画像上での3次元形状の類似度を計測する可微分損失関数も導入する。
論文 参考訳(メタデータ) (2020-11-24T14:22:42Z) - Densely connected multidilated convolutional networks for dense
prediction tasks [25.75557472306157]
密結合多重化DenseNet(D3Net)と呼ばれる新しいCNNアーキテクチャを提案する。
D3Netは、異なる解像度を同時にモデル化するために単一の層に異なる拡張因子を持つ新しい多重化畳み込みを含む。
Cityscapes を用いた画像セマンティックセグメンテーションタスクと MUSDB18 を用いた音源分離タスクの実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-11-21T05:15:12Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Joint Multi-Dimension Pruning via Numerical Gradient Update [120.59697866489668]
本稿では,空間,深さ,チャネルの3つの重要な側面において,ネットワークを同時に切断する方法であるジョイント・マルチディメンジョン・プルーニング(ジョイント・プルーニング)を提案する。
本手法は,1つのエンドツーエンドトレーニングにおいて3次元にわたって協調的に最適化され,従来よりも効率がよいことを示す。
論文 参考訳(メタデータ) (2020-05-18T17:57:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。