Mask-Encoded Sparsification: Mitigating Biased Gradients in Communication-Efficient Split Learning
- URL: http://arxiv.org/abs/2408.13787v3
- Date: Fri, 27 Sep 2024 03:07:05 GMT
- Title: Mask-Encoded Sparsification: Mitigating Biased Gradients in Communication-Efficient Split Learning
- Authors: Wenxuan Zhou, Zhihao Qu, Shen-Huan Lyu, Miao Cai, Baoliu Ye,
- Abstract summary: This paper introduces a novel framework designed to achieve a high compression ratio in Split Learning (SL) scenarios.
Our investigations demonstrate that compressing feature maps within SL leads to biased gradients that can negatively impact the convergence rates.
We employ a narrow bit-width encoded mask to compensate for the sparsification error without increasing the order of time complexity.
- Score: 15.78336840511033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel framework designed to achieve a high compression ratio in Split Learning (SL) scenarios where resource-constrained devices are involved in large-scale model training. Our investigations demonstrate that compressing feature maps within SL leads to biased gradients that can negatively impact the convergence rates and diminish the generalization capabilities of the resulting models. Our theoretical analysis provides insights into how compression errors critically hinder SL performance, which previous methodologies underestimate. To address these challenges, we employ a narrow bit-width encoded mask to compensate for the sparsification error without increasing the order of time complexity. Supported by rigorous theoretical analysis, our framework significantly reduces compression errors and accelerates the convergence. Extensive experiments also verify that our method outperforms existing solutions regarding training efficiency and communication complexity.
Related papers
- Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution [33.16889233975723]
Implicit degradation modeling-based blind super-resolution (SR) has attracted more increasing attention in the community.
We propose a new Content-decoupled Contrastive Learning-based blind image super-resolution (CdCL) framework.
arXiv Detail & Related papers (2024-08-10T04:51:43Z) - Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
A learning-based approach seeks to minimize the compromise between compression rate and reconstructed image quality.
A successful technique consists in introducing a deep hyperprior that operates within a 2-level nested latent variable model.
This paper extends this concept by designing a generalized L-level nested generative model with a Markov chain structure.
arXiv Detail & Related papers (2024-06-10T11:00:26Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - Improved Quantization Strategies for Managing Heavy-tailed Gradients in
Distributed Learning [20.91559450517002]
It is observed that gradient distributions are heavy-tailed, with outliers significantly influencing the design of compression strategies.
Existing parameter quantization methods experience performance degradation when this heavy-tailed feature is ignored.
We introduce a novel compression scheme specifically engineered for heavy-tailed gradient gradients, which effectively combines truncation with quantization.
arXiv Detail & Related papers (2024-02-02T06:14:31Z) - EControl: Fast Distributed Optimization with Compression and Error
Control [8.624830915051021]
We propose EControl, a novel mechanism that can regulate the strength of the feedback signal.
We show that EControl mitigates the naive implementation of our method and support our findings.
arXiv Detail & Related papers (2023-11-06T10:00:13Z) - ScaleCom: Scalable Sparsified Gradient Compression for
Communication-Efficient Distributed Training [74.43625662170284]
Large-scale distributed training of Deep Neural Networks (DNNs) on state-of-the-art platforms is expected to be severely communication constrained.
We propose a new compression technique that leverages similarity in the gradient distribution amongst learners to provide significantly improved scalability.
We experimentally demonstrate that ScaleCom has small overheads, directly reduces gradient traffic and provides high compression rates (65-400X) and excellent scalability (up to 64 learners and 8-12X larger batch sizes over standard training) without significant accuracy loss.
arXiv Detail & Related papers (2021-04-21T02:22:10Z) - Step-Ahead Error Feedback for Distributed Training with Compressed
Gradient [99.42912552638168]
We show that a new "gradient mismatch" problem is raised by the local error feedback in centralized distributed training.
We propose two novel techniques, 1) step ahead and 2) error averaging, with rigorous theoretical analysis.
arXiv Detail & Related papers (2020-08-13T11:21:07Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Accelerated Convergence for Counterfactual Learning to Rank [65.63997193915257]
We show that convergence rate of SGD approaches with IPS-weighted gradients suffers from the large variance introduced by the IPS weights.
We propose a novel learning algorithm, called CounterSample, that has provably better convergence than standard IPS-weighted gradient descent methods.
We prove that CounterSample converges faster and complement our theoretical findings with empirical results.
arXiv Detail & Related papers (2020-05-21T12:53:36Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
We consider the computational issues due to large sample size within the discriminant analysis framework.
We propose a new compression approach for reducing the number of training samples for linear and quadratic discriminant analysis.
arXiv Detail & Related papers (2020-05-08T05:09:08Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.