論文の概要: On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
- arxiv url: http://arxiv.org/abs/2408.13809v1
- Date: Sun, 25 Aug 2024 11:10:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 17:49:53.835952
- Title: On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
- Title(参考訳): Kolmogorov-Arnoldネットワークのロバスト性について:敵対的視点
- Authors: Tal Alter, Raz Lapid, Moshe Sipper,
- Abstract要約: Kolmogorov-Arnold Networks (KAN) は関数近似の新しいアプローチとして登場した。
理論的な約束にもかかわらず、敵対的な条件下でのカンの堅牢性はまだ十分に検討されていない。
この研究は、カンにおけるセキュリティの詳細な分析を初めて提供し、この新興分野における将来の研究の基盤となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kolmogorov-Arnold Networks (KANs) have recently emerged as a novel approach to function approximation, demonstrating remarkable potential in various domains. Despite their theoretical promise, the robustness of KANs under adversarial conditions has yet to be thoroughly examined. In this paper, we explore the adversarial robustness of KANs, with a particular focus on image classification tasks. We assess the performance of KANs against standard white-box adversarial attacks, comparing their resilience to that of established neural network architectures. Further, we investigate the transferability of adversarial examples between KANs and Multilayer Perceptron (MLPs), deriving critical insights into the unique vulnerabilities of KANs. Our experiments use the MNIST, FashionMNIST, and KMNIST datasets, providing a comprehensive evaluation of KANs in adversarial scenarios. This work offers the first in-depth analysis of security in KANs, laying the groundwork for future research in this emerging field.
- Abstract(参考訳): Kolmogorov-Arnold Networks (KANs) は関数近似の新しいアプローチとして最近登場し、様々な領域において顕著な可能性を示している。
理論的な約束にもかかわらず、敵対的な条件下でのカンの堅牢性はまだ十分に検討されていない。
本稿では,画像分類タスクに焦点をあてて,Kansの対角的ロバスト性について検討する。
我々は、標準のホワイトボックス攻撃に対してkanの性能を評価し、そのレジリエンスを確立されたニューラルネットワークアーキテクチャと比較する。
さらに,KansとMultilayer Perceptron (MLPs)の対立例の転送可能性について検討し,kansのユニークな脆弱性について重要な知見を得た。
実験では,MNIST,FashionMNIST,KMNISTのデータセットを用いて,敵シナリオにおけるkanの包括的評価を行った。
この研究は、カンにおけるセキュリティの詳細な分析を初めて提供し、この新興分野における将来の研究の基盤となる。
関連論文リスト
- Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KAN)はMulti-Layer Perceptrons (MLP)に代わる有望な代替品である。
カンはコルモゴロフ・アルノルドの表現定理と密接に一致し、モデル精度と解釈可能性の両方を高める可能性がある。
この結果から,kanベースのオートエンコーダは復元精度の点で競争力を発揮することが示された。
論文 参考訳(メタデータ) (2024-10-02T22:56:00Z) - Kolmogorov-Smirnov GAN [52.36633001046723]
我々は、KSGAN(Kolmogorov-Smirnov Generative Adversarial Network)という新しい深層生成モデルを提案する。
既存のアプローチとは異なり、KSGANはKS距離の最小化として学習プロセスを定式化している。
論文 参考訳(メタデータ) (2024-06-28T14:30:14Z) - Over-parameterization and Adversarial Robustness in Neural Networks: An Overview and Empirical Analysis [25.993502776271022]
大きなパラメータ空間を持つことは、敵の例に対するニューラルネットワークの脆弱性の主な疑念の1つと考えられている。
従来の研究は、検討されたモデルによっては、敵の例を生成するアルゴリズムが適切に機能しないことを示した。
論文 参考訳(メタデータ) (2024-06-14T14:47:06Z) - Suitability of KANs for Computer Vision: A preliminary investigation [28.030708956348864]
Kolmogorov-Arnold Networks (KAN) はニューラルネットワークのパラダイムを導入し、ネットワークの端に学習可能な関数を実装する。
本研究は、視覚モデルにおけるkansの適用性と有効性を評価し、基本的な認識とセグメンテーションタスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-06-13T13:13:17Z) - Robust Few-Shot Named Entity Recognition with Boundary Discrimination
and Correlation Purification [14.998158107063848]
NER (Few-shot named entity recognition) は、既存の知識を活用して、低リソース領域における新しい名前付きエンティティを認識することを目的としている。
境界識別・相関浄化法(BDCP)を用いた頑健な2段連写NER法を提案する。
スパン検出段階では、エンティティ境界判別モジュールを導入して、エンティティスパンを検出するための高度に区別された境界表現空間を提供する。
エンティティタイピング段階では、干渉情報を最小化してエンティティとコンテキストの相関を浄化する。
論文 参考訳(メタデータ) (2023-12-13T08:17:00Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
深層ニューラルネットワークは、人間の知覚できない敵のノイズを自然の例に付加する敵の例を予測するときに、誤分類が起こる。
textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)を提案する。
LFRCは、潜在空間における逆例の関係を、自然例と整合性に制約する。
論文 参考訳(メタデータ) (2023-03-29T13:50:01Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - On the Minimal Adversarial Perturbation for Deep Neural Networks with
Provable Estimation Error [65.51757376525798]
敵の摂動の存在は、証明可能な堅牢性に関する興味深い研究ラインを開いた。
検証可能な結果は、コミットしたエラーを見積り、バウンドするものではない。
本稿では,最小対向摂動を求めるための2つの軽量戦略を提案する。
その結果, 提案手法は, 分類に近い試料の理論的距離とロバスト性を近似し, 敵攻撃に対する確実な保証が得られた。
論文 参考訳(メタデータ) (2022-01-04T16:40:03Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Recent Advances in Understanding Adversarial Robustness of Deep Neural
Networks [15.217367754000913]
敵の例に抵抗する高い堅牢性を持つモデルを得ることがますます重要である。
我々は、敵の攻撃と堅牢性について、予備的な定義を与える。
我々は、頻繁に使用されるベンチマークについて研究し、理論的に証明された敵の堅牢性の境界について言及する。
論文 参考訳(メタデータ) (2020-11-03T07:42:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。