論文の概要: On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
- arxiv url: http://arxiv.org/abs/2408.13809v3
- Date: Wed, 12 Mar 2025 20:45:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 17:08:08.056801
- Title: On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
- Title(参考訳): Kolmogorov-Arnoldネットワークのロバスト性について:敵対的視点
- Authors: Tal Alter, Raz Lapid, Moshe Sipper,
- Abstract要約: Kolmogorov-Arnold Networks (KAN) は関数近似の新しいアプローチとして登場した。
理論的な約束にもかかわらず、敵対的な条件下でのカンの堅牢性はまだ十分に検討されていない。
我々は,標準のホワイトボックスとブラックボックスの敵攻撃に対するカンの性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kolmogorov-Arnold Networks (KANs) have recently emerged as a novel approach to function approximation, demonstrating remarkable potential in various domains. Despite their theoretical promise, the robustness of KANs under adversarial conditions has yet to be thoroughly examined. In this paper we explore the adversarial robustness of KANs, with a particular focus on image classification tasks. We assess the performance of KANs against standard white box and black-box adversarial attacks, comparing their resilience to that of established neural network architectures. Our experimental evaluation encompasses a variety of standard image classification benchmark datasets and investigates both fully connected and convolutional neural network architectures, of three sizes: small, medium, and large. We conclude that small- and medium-sized KANs (either fully connected or convolutional) are not consistently more robust than their standard counterparts, but that large-sized KANs are, by and large, more robust. This comprehensive evaluation of KANs in adversarial scenarios offers the first in-depth analysis of KAN security, laying the groundwork for future research in this emerging field.
- Abstract(参考訳): Kolmogorov-Arnold Networks (KANs) は関数近似の新しいアプローチとして最近登場し、様々な領域において顕著な可能性を示している。
理論的な約束にもかかわらず、敵対的な条件下でのカンの堅牢性はまだ十分に検討されていない。
本稿では, 画像分類タスクに焦点をあてて, カンの対角的堅牢性について検討する。
我々は、標準のホワイトボックスとブラックボックスの敵攻撃に対するカンの性能を評価し、それらのレジリエンスを確立されたニューラルネットワークアーキテクチャと比較した。
実験による評価は、さまざまな標準画像分類ベンチマークデータセットを含み、小型、中型、大規模の3つのサイズで、完全に接続されたニューラルネットワークアーキテクチャと畳み込みニューラルネットワークアーキテクチャの両方を調査する。
我々は、中小のカン(完全連結または畳み込み)は標準のカンよりも一貫して堅牢ではなく、大型のカンは、より大きく、より堅牢である、と結論付けている。
敵シナリオにおけるkanの包括的評価は、kanセキュリティの詳細な分析を初めて提供し、この新興分野における今後の研究の基盤となる。
関連論文リスト
- Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions [49.546479320670464]
本稿では,セグメンテーションモデルの空間的ロバスト性を評価するための特別な指標を紹介する。
本稿では,モデルロバスト性をより深く理解する手法として,地域対応型マルチアタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック・アタック分析を提案する。
その結果、モデルがこれらの2種類の脅威に異なる反応を示すことが明らかとなった。
論文 参考訳(メタデータ) (2025-04-02T11:37:39Z) - Exploring Adversarial Transferability between Kolmogorov-arnold Networks [13.615924349022247]
Kolmogorov-Arnold Networks (KAN) はトランスフォーメーションモデルパラダイムとして登場した。
彼らの敵対的ロバスト性は、特に異なるKANアーキテクチャにおいて、未発見のままである。
本稿では,Kansの最初の転送攻撃手法であるAdvKANを提案する。
論文 参考訳(メタデータ) (2025-03-08T16:48:05Z) - Can KAN Work? Exploring the Potential of Kolmogorov-Arnold Networks in Computer Vision [6.554163686640315]
本研究ではまず,コンピュータビジョンタスクにおけるkanの可能性を分析し,画像分類とセマンティックセグメンテーションにおけるkanとその畳み込み特性を評価する。
以上の結果から,感性は強いが,ノイズに敏感であり,頑健さを抑えることが示唆された。
この課題に対処するため,正規化手法を提案し,セグメンション・デアクティベーション手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T05:44:48Z) - Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KAN)はMulti-Layer Perceptrons (MLP)に代わる有望な代替品である。
カンはコルモゴロフ・アルノルドの表現定理と密接に一致し、モデル精度と解釈可能性の両方を高める可能性がある。
この結果から,kanベースのオートエンコーダは復元精度の点で競争力を発揮することが示された。
論文 参考訳(メタデータ) (2024-10-02T22:56:00Z) - Kolmogorov-Smirnov GAN [52.36633001046723]
我々は、KSGAN(Kolmogorov-Smirnov Generative Adversarial Network)という新しい深層生成モデルを提案する。
既存のアプローチとは異なり、KSGANはKS距離の最小化として学習プロセスを定式化している。
論文 参考訳(メタデータ) (2024-06-28T14:30:14Z) - Suitability of KANs for Computer Vision: A preliminary investigation [28.030708956348864]
Kolmogorov-Arnold Networks (KAN) はニューラルネットワークのパラダイムを導入し、ネットワークの端に学習可能な関数を実装する。
本研究は、視覚モデルにおけるkansの適用性と有効性を評価し、基本的な認識とセグメンテーションタスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-06-13T13:13:17Z) - Robust Few-Shot Named Entity Recognition with Boundary Discrimination
and Correlation Purification [14.998158107063848]
NER (Few-shot named entity recognition) は、既存の知識を活用して、低リソース領域における新しい名前付きエンティティを認識することを目的としている。
境界識別・相関浄化法(BDCP)を用いた頑健な2段連写NER法を提案する。
スパン検出段階では、エンティティ境界判別モジュールを導入して、エンティティスパンを検出するための高度に区別された境界表現空間を提供する。
エンティティタイピング段階では、干渉情報を最小化してエンティティとコンテキストの相関を浄化する。
論文 参考訳(メタデータ) (2023-12-13T08:17:00Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
深層ニューラルネットワークは、人間の知覚できない敵のノイズを自然の例に付加する敵の例を予測するときに、誤分類が起こる。
textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)を提案する。
LFRCは、潜在空間における逆例の関係を、自然例と整合性に制約する。
論文 参考訳(メタデータ) (2023-03-29T13:50:01Z) - Generalizability of Adversarial Robustness Under Distribution Shifts [57.767152566761304]
本研究は, 実証的, 証明された敵対的堅牢性間の相互作用と, ドメインの一般化を両立させるための第一歩を踏み出した。
複数のドメインでロバストモデルをトレーニングし、その正確性とロバスト性を評価する。
本研究は, 現実の医療応用をカバーするために拡張され, 敵の増大は, クリーンデータ精度に最小限の影響を伴って, 強靭性の一般化を著しく促進する。
論文 参考訳(メタデータ) (2022-09-29T18:25:48Z) - Bi-fidelity Evolutionary Multiobjective Search for Adversarially Robust
Deep Neural Architectures [19.173285459139592]
本稿では,双方向多目的ニューラルアーキテクチャ探索手法を提案する。
低忠実度性能予測器に加えて,高忠実度評価で訓練された代理モデルの出力を補助対象として活用する。
提案手法の有効性は, CIFAR-10, CIFAR-100, SVHNデータセットを用いた広範囲な実験により確認された。
論文 参考訳(メタデータ) (2022-07-12T05:26:09Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - On the Minimal Adversarial Perturbation for Deep Neural Networks with
Provable Estimation Error [65.51757376525798]
敵の摂動の存在は、証明可能な堅牢性に関する興味深い研究ラインを開いた。
検証可能な結果は、コミットしたエラーを見積り、バウンドするものではない。
本稿では,最小対向摂動を求めるための2つの軽量戦略を提案する。
その結果, 提案手法は, 分類に近い試料の理論的距離とロバスト性を近似し, 敵攻撃に対する確実な保証が得られた。
論文 参考訳(メタデータ) (2022-01-04T16:40:03Z) - Exploring Architectural Ingredients of Adversarially Robust Deep Neural
Networks [98.21130211336964]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,ネットワーク幅と深さがDNNの強靭性に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2021-10-07T23:13:33Z) - Pruning in the Face of Adversaries [0.0]
ニューラルネットワークのプルーニングがL-0,L-2,L-infinity攻撃に対する対向的ロバスト性に及ぼす影響を評価する。
その結果,ニューラルネットワークのプルーニングと対向ロバスト性は相互に排他的ではないことが確認された。
分析を敵のシナリオに付加的な仮定を取り入れた状況にまで拡張し、状況によって異なる戦略が最適であることを示す。
論文 参考訳(メタデータ) (2021-08-19T09:06:16Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Recent Advances in Understanding Adversarial Robustness of Deep Neural
Networks [15.217367754000913]
敵の例に抵抗する高い堅牢性を持つモデルを得ることがますます重要である。
我々は、敵の攻撃と堅牢性について、予備的な定義を与える。
我々は、頻繁に使用されるベンチマークについて研究し、理論的に証明された敵の堅牢性の境界について言及する。
論文 参考訳(メタデータ) (2020-11-03T07:42:53Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
関係データに対するKENNの拡張を提案する。
その結果、KENNは、存在関係データにおいても、基礎となるニューラルネットワークの性能を高めることができることがわかった。
論文 参考訳(メタデータ) (2020-09-13T21:12:20Z) - A general framework for defining and optimizing robustness [74.67016173858497]
分類器の様々な種類の堅牢性を定義するための厳密でフレキシブルなフレームワークを提案する。
我々の概念は、分類器の堅牢性は正確性とは無関係な性質と考えるべきであるという仮定に基づいている。
我々は,任意の分類モデルに適用可能な,非常に一般的なロバスト性フレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-19T13:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。