論文の概要: Generalization of Graph Neural Networks is Robust to Model Mismatch
- arxiv url: http://arxiv.org/abs/2408.13878v1
- Date: Sun, 25 Aug 2024 16:00:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 15:42:00.362701
- Title: Generalization of Graph Neural Networks is Robust to Model Mismatch
- Title(参考訳): モデルミスマッチにロバストなグラフニューラルネットワークの一般化
- Authors: Zhiyang Wang, Juan Cervino, Alejandro Ribeiro,
- Abstract要約: グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
- 参考スコア(独自算出の注目度): 84.01980526069075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities. However, the current analysis of GNN generalization relies on the assumption that training and testing data are independent and identically distributed (i.i.d). This imposes limitations on the cases where a model mismatch exists when generating testing data. In this paper, we examine GNNs that operate on geometric graphs generated from manifold models, explicitly focusing on scenarios where there is a mismatch between manifold models generating training and testing data. Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch. This indicates that GNNs trained on graphs generated from a manifold can still generalize well to unseen nodes and graphs generated from a mismatched manifold. We attribute this mismatch to both node feature perturbations and edge perturbations within the generated graph. Our findings indicate that the generalization gap decreases as the number of nodes grows in the training graph while increasing with larger manifold dimension as well as larger mismatch. Importantly, we observe a trade-off between the generalization of GNNs and the capability to discriminate high-frequency components when facing a model mismatch. The most important practical consequence of this analysis is to shed light on the filter design of generalizable GNNs robust to model mismatch. We verify our theoretical findings with experiments on multiple real-world datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
しかし、GNN一般化の現在の分析は、トレーニングデータとテストデータが独立で同一に分散しているという仮定に依存している。
これにより、テストデータを生成するときにモデルミスマッチが存在する場合に制限が課される。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討し,学習データと試験データとのミスマッチが存在するシナリオに着目した。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
このことは、多様体から生成されるグラフで訓練されたGNNが、いまだに不一致な多様体から生成されるノードやグラフに対してうまく一般化できることを示している。
このミスマッチは、生成されたグラフ内のノードの特徴摂動とエッジ摂動の両方に起因している。
その結果, 学習グラフのノード数が増加するにつれて, 一般化ギャップは減少し, 多様体次元が大きくなるとともに, ミスマッチも大きくなることがわかった。
重要なことは、GNNの一般化と、モデルミスマッチに直面した際に高周波成分を識別する能力とのトレードオフを観察することである。
この分析の最も重要な実践的結果は、モデルミスマッチに頑健な一般化可能なGNNのフィルタ設計に光を当てることである。
我々は,複数の実世界のデータセットを用いた実験により理論的知見を検証する。
関連論文リスト
- Graph neural networks and non-commuting operators [4.912318087940015]
我々は,グラフトン・タプルニューラルネットワークの極限理論を開発し,それを普遍的な伝達可能性定理の証明に利用する。
我々の理論的結果は、GNNのよく知られた移動可能性定理を、複数の同時グラフの場合にまで拡張する。
得られたモデルの安定性を確実に実施する訓練手順を導出する。
論文 参考訳(メタデータ) (2024-11-06T21:17:14Z) - Generalization of Geometric Graph Neural Networks [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
ランダムグラフ生成器を用いて,グラフサイズと構造特性がGNNの予測性能に与える影響について検討する。
本稿では,GNNが未知のグラフに一般化できるかどうかを決定する上で,平均ノード次数が重要な特徴であることを示す。
集約された入力に対して単一の正準非線形変換を一般化することにより、ネットワークが新しいグラフに柔軟に対応可能なマルチモジュールGNNフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-14T12:13:59Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。