論文の概要: FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions
- arxiv url: http://arxiv.org/abs/2408.13926v1
- Date: Sun, 25 Aug 2024 19:51:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 15:22:15.586330
- Title: FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions
- Title(参考訳): FedGlu: 血糖除去領域のパフォーマンス向上のための個人化学習ベースのグルコース予測アルゴリズム
- Authors: Darpit Dave, Kathan Vyas, Jagadish Kumaran Jayagopal, Alfredo Garcia, Madhav Erraguntla, Mark Lawley,
- Abstract要約: 連続グルコースモニタリング(Continuous glucose monitoring, CGM)デバイスは、血糖値のリアルタイムモニタリングと、血糖値の変動に対するタイムリーな警告を提供する。
低血糖や高血糖のような希少な出来事は、その頻度が低いために依然として困難である。
本稿では,血糖除去領域の性能を著しく向上させる新しいHH損失関数を提案する。
- 参考スコア(独自算出の注目度): 4.073768455373616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous glucose monitoring (CGM) devices provide real-time glucose monitoring and timely alerts for glycemic excursions, improving glycemic control among patients with diabetes. However, identifying rare events like hypoglycemia and hyperglycemia remain challenging due to their infrequency. Moreover, limited access to sensitive patient data hampers the development of robust machine learning models. Our objective is to accurately predict glycemic excursions while addressing data privacy concerns. To tackle excursion prediction, we propose a novel Hypo-Hyper (HH) loss function, which significantly improves performance in the glycemic excursion regions. The HH loss function demonstrates a 46% improvement over mean-squared error (MSE) loss across 125 patients. To address privacy concerns, we propose FedGlu, a machine learning model trained in a federated learning (FL) framework. FL allows collaborative learning without sharing sensitive data by training models locally and sharing only model parameters across other patients. FedGlu achieves a 35% superior glycemic excursion detection rate compared to local models. This improvement translates to enhanced performance in predicting both, hypoglycemia and hyperglycemia, for 105 out of 125 patients. These results underscore the effectiveness of the proposed HH loss function in augmenting the predictive capabilities of glucose predictions. Moreover, implementing models within a federated learning framework not only ensures better predictive capabilities but also safeguards sensitive data concurrently.
- Abstract(参考訳): 連続血糖モニタリング(Continuous glucose monitoring, CGM)デバイスは、糖尿病患者の血糖値のリアルタイムモニタリングと血糖値のタイムリーな測定を行い、血糖値のコントロールを改善している。
しかし、低血糖や高血糖のような稀な事象を特定することは、その頻度が低いために難しいままである。
さらに、センシティブな患者データへのアクセス制限は、堅牢な機械学習モデルの開発を妨げます。
我々の目標は、データプライバシの懸念に対処しながら、グリセミックの抽出を正確に予測することである。
そこで本研究では,グリセミック抽出領域の性能を著しく向上させる新しいHH損失関数を提案する。
HH損失関数は平均二乗誤差(MSE)よりも46%改善した。
プライバシー問題に対処するために、フェデレーション学習(FL)フレームワークでトレーニングされた機械学習モデルであるFedGluを提案する。
FLは、モデルをローカルにトレーニングし、他の患者に対してのみモデルパラメータを共有することで、センシティブなデータを共有することなく、協調的な学習を可能にする。
FedGluは、局所モデルよりも35%優れたグリセマ性運動検出率を達成している。
この改善は、125例中105例において、低血糖と高血糖の両方を予測する能力の向上につながった。
これらの結果は,グルコース予測の予測能力を高めるために提案したHH損失関数の有効性を裏付けるものである。
さらに、フェデレートされた学習フレームワーク内でモデルを実装することにより、予測能力の向上だけでなく、センシティブなデータを同時に保護することが可能になる。
関連論文リスト
- Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNetは、行動と生理の健康を継続的に監視するAI駆動のセンサーシステムである。
本稿では,患者の行動・生理的データを組み込んだ分解型トランスフォーマーモデルを提案する。
GGlucoNetは、T1-Diabetesの12人を含むデータを用いて、RMSEの60%の改善とパラメータ数の21%削減を実現している。
論文 参考訳(メタデータ) (2024-11-16T05:09:20Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Privacy Preserved Blood Glucose Level Cross-Prediction: An Asynchronous Decentralized Federated Learning Approach [13.363740869325646]
新たに診断された1型糖尿病(T1D)患者は、効果的な血液グルコース(BG)予測モデルを得るのに苦慮することが多い。
Asynchronous Decentralized Federated Learning による血糖予測である「GluADFL」を提案する。
論文 参考訳(メタデータ) (2024-06-21T17:57:39Z) - Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning [4.07484910093752]
米国では、成人の3分の1以上がプレ糖尿病であり、80%は彼らの状態に気づいていない。
既存のウェアラブルグルコースモニターは、小さなデータセットでトレーニングされたモデルの不足によって制限されている。
論文 参考訳(メタデータ) (2024-06-12T07:05:53Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGluは、CGM時系列データに基づく短期的なグルコース予測のためのエンドツーエンドパイプラインである。
患者の個人データを追加することなく、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-18T06:02:12Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。