論文の概要: Optimizing Luxury Vehicle Dealership Networks: A Graph Neural Network Approach to Site Selection
- arxiv url: http://arxiv.org/abs/2408.13961v1
- Date: Sun, 25 Aug 2024 23:49:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 15:22:15.486550
- Title: Optimizing Luxury Vehicle Dealership Networks: A Graph Neural Network Approach to Site Selection
- Title(参考訳): 乗用車Dealership Networksの最適化: サイト選択のためのグラフニューラルネットワークアプローチ
- Authors: Luca Silvano Carocci, Qiwei Han,
- Abstract要約: 本研究では,米国における高級車メーカーのディーラーネットワークプランニングを最適化するために,グラフニューラルネットワーク(GNN)の新たな応用を提案する。
ディーラーの立地決定要因に関する総合的な文献レビューを行い、65の郡レベルの説明変数を特定した。
34の変数の組み合わせと10の最先端GNN演算子によるアブレーション研究は、様々な変数の予測力に関する重要な洞察を明らかにしている。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a novel application of Graph Neural Networks (GNNs) to optimize dealership network planning for a luxury car manufacturer in the U.S. By conducting a comprehensive literature review on dealership location determinants, the study identifies 65 county-level explanatory variables, augmented by two additional measures of regional interconnectedness derived from social and mobility data. An ablation study involving 34 variable combinations and ten state-of-the-art GNN operators reveals key insights into the predictive power of various variables, particularly highlighting the significance of competition, demographic factors, and mobility patterns in influencing dealership location decisions. The analysis pinpoints seven specific counties as promising targets for network expansion. This research not only illustrates the effectiveness of GNNs in solving complex geospatial decision-making problems but also provides actionable recommendations and valuable methodological insights for industry practitioners.
- Abstract(参考訳): 本研究では,米国における高級車メーカーのディーラーネットワークプランニングを最適化するためのグラフニューラルネットワーク(GNN)の新たな適用法を提案する。
34の変数の組み合わせと10の最先端のGNN演算子によるアブレーション研究は、様々な変数の予測力に関する重要な洞察を示し、特に、ディーラーの位置決定に影響を与える競合、人口統計学的要因、移動パターンの意義を浮き彫りにしている。
この分析は、7つの特定の郡をネットワーク拡大の有望な目標としている。
本研究は, 複雑な地理空間決定問題の解決におけるGNNの有効性を実証するだけでなく, 産業従事者に対して, 実用的なレコメンデーションと方法論的洞察を提供する。
関連論文リスト
- Heterogeneous Graph Neural Networks with Post-hoc Explanations for Multi-modal and Explainable Land Use Inference [11.753345219488745]
本稿では、異種グラフニューラルネットワーク(HGN)と説明可能なAI技術を組み合わせた土地利用推定のための説明可能なフレームワークを提案する。
実験により、提案したHGNは6つの土地利用指標すべてに対して、ベースライングラフニューラルネットワークを著しく上回っていることが示された。
これらの分析は,提案したHGNが都市計画や政策立案において,都市利害関係者を適切に支援できることを示した。
論文 参考訳(メタデータ) (2024-06-19T17:39:10Z) - Influence Maximization via Graph Neural Bandits [54.45552721334886]
IM問題を多ラウンド拡散キャンペーンに設定し,影響を受けやすいユーザ数を最大化することを目的とした。
IM-GNB(Influence Maximization with Graph Neural Bandits)を提案する。
論文 参考訳(メタデータ) (2024-06-18T17:54:33Z) - WEST GCN-LSTM: Weighted Stacked Spatio-Temporal Graph Neural Networks for Regional Traffic Forecasting [0.8215320771752098]
本研究の目的は,従来の時間的グラフニューラルネットワークアーキテクチャの拡張である。
エンドプロダクトは、WEST(Weighted STacked) GCN-LSTMと呼ばれる新しい時間グラフネットワークニューラルネットワークアーキテクチャである。
論文 参考訳(メタデータ) (2024-05-01T15:19:19Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Towards Causal Classification: A Comprehensive Study on Graph Neural
Networks [9.360596957822471]
グラフ構造化データを処理するグラフニューラルネットワーク(GNN)は因果解析の可能性を拡大した。
我々の研究は、9つのベンチマークグラフ分類モデルに展開し、7つのデータセットでその強度と汎用性をテストした。
本研究は,多種多様なデータ中心分野におけるGNNの理解と実用化の促進に有効である。
論文 参考訳(メタデータ) (2024-01-27T15:35:05Z) - INFLECT-DGNN: Influencer Prediction with Dynamic Graph Neural Networks [4.677411878315618]
INFLuencer prEdiCTion with Dynamic Graph Neural Networks (GNN) and Recurrent Neural Networks (RNN)について述べる。
モデル予測に基づく意思決定を支援する,新たな利益主導型フレームワークを提案する。
我々の研究は、参照とターゲットマーケティングの分野に重大な影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-16T19:04:48Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
インフルエンサー検出のための動的グラフニューラルネットワーク(GNN)の構成について検討する。
GNNにおける深層多面的注意と時間特性の符号化が性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-15T13:00:25Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
本稿では,トランジタブルグラフニューラルネットワーク(Transferable Graph Neural Network, T-GNN)フレームワークを提案する。
具体的には、ドメイン固有知識が減少する構造運動知識を探索するために、ドメイン不変GNNを提案する。
さらに,注目に基づく適応的知識学習モジュールを提案し,知識伝達のための詳細な個別レベルの特徴表現について検討した。
論文 参考訳(メタデータ) (2022-03-09T21:08:47Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Graph Neural Networks for Traffic Forecasting [0.0]
本稿では,交通予測の課題に着目し,この問題に対するグラフニューラルネットワーク(GNN)の最近の開発と応用について概観する。
GNNは、入力を直接グラフデータとして処理する深層学習手法のクラスである。
これにより、トラフィックデータの空間的依存関係をより直接的に活用し、ディープラーニングの利点を利用して最先端の結果が得られます。
論文 参考訳(メタデータ) (2021-04-27T10:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。