論文の概要: Automatic Medical Report Generation: Methods and Applications
- arxiv url: http://arxiv.org/abs/2408.13988v1
- Date: Mon, 26 Aug 2024 03:02:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 15:12:30.827279
- Title: Automatic Medical Report Generation: Methods and Applications
- Title(参考訳): 医療報告書の自動作成 : 方法と応用
- Authors: Li Guo, Anas M. Tahir, Dong Zhang, Z. Jane Wang, Rabab K. Ward,
- Abstract要約: 本稿では,2021年から2024年までのAMRG法について概観的に検討する。
i)この分野での主要な課題に対する解決策を提示し、(ii)様々な画像モダリティをまたいだAMRGアプリケーションを探索し、(iii)公開データセットを導入し、(iv)評価指標を概説し、(v)モデル性能を著しく向上させる技術を特定し、(vi)未解決問題と将来の研究方向性について議論する。
- 参考スコア(独自算出の注目度): 22.203961518077158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing demand for medical imaging has surpassed the capacity of available radiologists, leading to diagnostic delays and potential misdiagnoses. Artificial intelligence (AI) techniques, particularly in automatic medical report generation (AMRG), offer a promising solution to this dilemma. This review comprehensively examines AMRG methods from 2021 to 2024. It (i) presents solutions to primary challenges in this field, (ii) explores AMRG applications across various imaging modalities, (iii) introduces publicly available datasets, (iv) outlines evaluation metrics, (v) identifies techniques that significantly enhance model performance, and (vi) discusses unresolved issues and potential future research directions. This paper aims to provide a comprehensive understanding of the existing literature and inspire valuable future research.
- Abstract(参考訳): 医用画像の需要が増加し、放射線技師の能力は超え、診断の遅れと潜在的な誤診につながった。
人工知能(AI)技術、特に自動医療報告生成(AMRG)は、このジレンマに対して有望な解決策を提供する。
本稿では,2021年から2024年までのAMRG法について概観的に検討する。
それ
(i)この分野の主要な課題に対する解決策を提示する。
(II)様々な画像モダリティにまたがるAMRG応用の探索
(iii)公開データセットを導入
(4)評価基準の概要
(v)モデル性能を著しく向上させる技術を特定し、
(vi)未解決問題と今後の研究方向性について論じる。
本稿は,既存の文献を包括的に理解し,価値ある将来の研究を促すことを目的としている。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Navigating the landscape of multimodal AI in medicine: a scoping review on technical challenges and clinical applications [2.3754862363513523]
本稿では,医学領域全体にわたるディープラーニングベースのマルチモーダルAIアプリケーションの展望を概観する。
マルチモーダルAIモデルは、AUCの6.2ポイントの平均的な改善により、一貫して単調なAIモデルを上回っている。
我々は,マルチモーダルAI開発を推進している重要な要因を特定し,フィールドの成熟を促進するための推奨事項を提案する。
論文 参考訳(メタデータ) (2024-11-06T09:18:05Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
近年,Med-LVLM (Med-LVLMs) の進歩により,対話型診断ツールの新たな可能性が高まっている。
Med-LVLMは、しばしば事実の幻覚に悩まされ、誤った診断につながることがある。
我々は,Med-LVLMの現実性を高めるために,多目的マルチモーダルRAGシステムMMed-RAGを提案する。
論文 参考訳(メタデータ) (2024-10-16T23:03:27Z) - The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
放射線技師の不足に起因する社会問題は激化しており、人工知能は潜在的な解決策として強調されている。
最近出現する大規模生成AIは、大規模言語モデル(LLM)からマルチモーダルモデルへと拡張されている。
このスコーピングレビューは、大規模生成型AIアプリケーションの臨床的価値に関する既存の文献を体系的に整理する。
論文 参考訳(メタデータ) (2024-09-03T00:48:50Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Automated Radiology Report Generation: A Review of Recent Advances [5.965255286239531]
人工知能の最近の技術進歩は、自動放射線学レポート生成に大きな可能性を示している。
人工知能の最近の進歩は、自動放射線診断レポート生成に大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-17T15:06:08Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
マルチメディア分析から医療診断に至るまで、クロスモーダル推論(CMR)が重要な分野として浮上している。
この調査は、解釈可能なクロスモーダル推論(I-CMR)の領域を掘り下げる
本調査では,I-CMRの3段階分類法について概説する。
論文 参考訳(メタデータ) (2023-09-05T05:06:48Z) - A Survey on Automated Diagnosis of Alzheimer's Disease Using Optical
Coherence Tomography and Angiography [0.0]
OCTとOCTAはアルツハイマー病(AD)の早期診断に有望なツールである
OCTデバイスが生成するマルチスライススキャンの解釈と分類は、訓練された実践者であっても時間がかかるし、難しい。
緑内障などの各種疾患に対するOCTスキャンの自動解析に関する機械学習およびディープラーニングアプローチに関する調査がある。
現在の文献では、OCTまたはOCTAを用いたアルツハイマー病や認知障害の診断に関する広範な調査が欠如している。
論文 参考訳(メタデータ) (2022-09-07T08:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。