論文の概要: Research Advances and New Paradigms for Biology-inspired Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2408.13996v2
- Date: Wed, 28 Aug 2024 08:28:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 12:58:09.304061
- Title: Research Advances and New Paradigms for Biology-inspired Spiking Neural Networks
- Title(参考訳): 生物にインスパイアされたスパイクニューラルネットワーク研究の進展と新しいパラダイム
- Authors: Tianyu Zheng, Liyuan Han, Tielin Zhang,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、計算シミュレーションと人工知能の分野で人気を集めている。
本稿では,SNNの歴史的発展を考察し,これら2つの分野が相互に交わり,急速に融合していることを結論する。
- 参考スコア(独自算出の注目度): 8.315801422499861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are gaining popularity in the computational simulation and artificial intelligence fields owing to their biological plausibility and computational efficiency. This paper explores the historical development of SNN and concludes that these two fields are intersecting and merging rapidly. Following the successful application of Dynamic Vision Sensors (DVS) and Dynamic Audio Sensors (DAS), SNNs have found some proper paradigms, such as continuous visual signal tracking, automatic speech recognition, and reinforcement learning for continuous control, that have extensively supported their key features, including spike encoding, neuronal heterogeneity, specific functional circuits, and multiscale plasticity. Compared to these real-world paradigms, the brain contains a spiking version of the biology-world paradigm, which exhibits a similar level of complexity and is usually considered a mirror of the real world. Considering the projected rapid development of invasive and parallel Brain-Computer Interface (BCI), as well as the new BCI-based paradigms that include online pattern recognition and stimulus control of biological spike trains, SNNs naturally leverage their advantages in energy efficiency, robustness, and flexibility. The biological brain has inspired the present study of SNNs and effective SNN machine-learning algorithms, which can help enhance neuroscience discoveries in the brain by applying them to the new BCI paradigm. Such two-way interactions with positive feedback can accelerate brain science research and brain-inspired intelligence technology.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、その生物学的妥当性と計算効率のため、計算シミュレーションと人工知能分野で人気を集めている。
本稿では,SNNの歴史的発展を考察し,これら2つの分野が相互に交わり,急速に融合していることを結論する。
Dynamic Vision Sensors (DVS) と Dynamic Audio Sensors (DAS) が成功した後、SNNは連続的な視覚信号追跡、自動音声認識、連続制御のための強化学習などの適切なパラダイムを発見し、スパイクエンコーディング、ニューロンの不均一性、特定の機能的回路、マルチスケールの可塑性などの主要な特徴を広くサポートしてきた。
これらの現実世界のパラダイムと比較すると、脳は生物学の世界パラダイムのスパイクバージョンを含み、同様のレベルの複雑さを示し、通常現実世界の鏡と見なされる。
侵襲的で並列なBrain-Computer Interface(BCI)の急速な開発と、生物スパイク列車のオンラインパターン認識と刺激制御を含む新しいBCIベースのパラダイムを考えると、SNNはエネルギー効率、堅牢性、柔軟性の利点を自然に活用する。
生物学的脳は、SNNと効果的なSNN機械学習アルゴリズムの研究にインスピレーションを与え、新しいBCIパラダイムに適用することで、脳内の神経科学の発見を促進するのに役立つ。
このような肯定的なフィードバックと双方向の相互作用は、脳科学の研究と脳にインスパイアされたインテリジェンス技術を加速させる。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - To Spike or Not To Spike: A Digital Hardware Perspective on Deep
Learning Acceleration [4.712922151067433]
ディープラーニングモデルがスケールするにつれて、コンピュータビジョンから自然言語処理まで、ドメイン間の競争が激化する。
生物学的脳のパワー効率は、大規模深層学習(DL)モデルよりも優れている。
ニューロモルフィックコンピューティングは、DLモデルの効率を改善するために、脳の操作を模倣しようとする。
論文 参考訳(メタデータ) (2023-06-27T19:04:00Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
軸-体性および軸-体性シナプスを模擬した神経接続概念を導入する。
我々は,大規模ASRモデルの生物学的に現実的な実装によって,競争性能が向上できることを初めて実証した。
論文 参考訳(メタデータ) (2021-10-04T21:24:10Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
より多くの脳のような能力は、新しい理論、モデル、および人工学習システムを設計する方法を要求するかもしれない。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
論文 参考訳(メタデータ) (2021-05-15T19:49:32Z) - A Spiking Neural Network Emulating the Structure of the Oculomotor
System Requires No Learning to Control a Biomimetic Robotic Head [0.0]
バイオミメティック・ロボットヘッドのプロトタイプの心臓にニューロモルフィック・オキュロモータ・コントローラが配置されている。
コントローラは、すべてのデータがスパイクニューラルネットワーク(SNN)によって符号化され、処理されるという意味でユニークなものです。
ロボットの目標追跡能力について報告し、その眼球運動学は人間の眼研究で報告されたものと類似していることを示し、生物学的に制約された学習を用いて、その性能をさらに向上させることができることを示す。
論文 参考訳(メタデータ) (2020-02-18T13:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。