論文の概要: Enhancing Depression Diagnosis with Chain-of-Thought Prompting
- arxiv url: http://arxiv.org/abs/2408.14053v2
- Date: Tue, 27 Aug 2024 08:05:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 12:32:33.048415
- Title: Enhancing Depression Diagnosis with Chain-of-Thought Prompting
- Title(参考訳): Chain-of-Thought Promptingによる抑うつ診断の強化
- Authors: Elysia Shi, Adithri Manda, London Chowdhury, Runeema Arun, Kevin Zhu, Michael Lam,
- Abstract要約: 我々は,患者健康アンケート8(PHQ-8)のスコアを評価するためのチェーン・オブ・シント(CoT)を用いることで,AIモデルによるスコアの精度が向上すると考えている。
私たちの目標は、AIモデルによる人間の会話の複雑さに対する理解を広げ、患者の感情やトーンをより効果的に評価できるようにすることです。
- 参考スコア(独自算出の注目度): 1.8532406942078647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When using AI to detect signs of depressive disorder, AI models habitually draw preemptive conclusions. We theorize that using chain-of-thought (CoT) prompting to evaluate Patient Health Questionnaire-8 (PHQ-8) scores will improve the accuracy of the scores determined by AI models. In our findings, when the models reasoned with CoT, the estimated PHQ-8 scores were consistently closer on average to the accepted true scores reported by each participant compared to when not using CoT. Our goal is to expand upon AI models' understanding of the intricacies of human conversation, allowing them to more effectively assess a patient's feelings and tone, therefore being able to more accurately discern mental disorder symptoms; ultimately, we hope to augment AI models' abilities, so that they can be widely accessible and used in the medical field.
- Abstract(参考訳): うつ病の兆候を検出するためにAIを使用する場合、AIモデルは習慣的にプリエンプティブな結論を引き出す。
我々は,患者健康アンケート8(PHQ-8)のスコアを評価するためのチェーン・オブ・シント(CoT)を用いることで,AIモデルによるスコアの精度が向上すると考えている。
以上の結果から,CoTを用いた場合のPHQ-8スコアは,CoTを使用しない場合と比較して,各被験者が報告した真のスコアと平均的に常に近かった。
我々の目標は、人間の会話の複雑さに対するAIモデルの理解を拡大し、患者の感情やトーンをより効果的に評価し、精神疾患の症状をより正確に識別できるようにすることです。
関連論文リスト
- Depression Detection and Analysis using Large Language Models on Textual and Audio-Visual Modalities [25.305909441170993]
うつ病は公衆衛生上の重大な問題であり、個人の心理的健康に大きな影響を与えている。
診断されていない場合、うつ病は重篤な健康問題を引き起こし、身体的に現れて自殺に至る。
論文 参考訳(メタデータ) (2024-07-08T17:00:51Z) - Explainable AI Enhances Glaucoma Referrals, Yet the Human-AI Team Still Falls Short of the AI Alone [6.740852152639975]
各種のAI説明は、提供者が即時または緊急の専門紹介を必要とする患者を区別するのにどのように役立つかを検討する。
我々は、高リスク患者を特定するためのプロキシとして、通常のアイケアデータから緑内障手術のニーズを予測するための説明可能なAIアルゴリズムを構築した。
本研究は,本質的・ポストホックな説明性を取り入れ,ヒト-AIチームのパフォーマンスを評価するために,眼科医とオンライン研究を行った。
論文 参考訳(メタデータ) (2024-05-24T03:01:20Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
本研究の目的は,言語習得の分野で開発された信号処理algorithmの関連性を評価することである。
論文 参考訳(メタデータ) (2023-08-09T07:51:40Z) - Understanding the Effect of Counterfactual Explanations on Trust and
Reliance on AI for Human-AI Collaborative Clinical Decision Making [5.381004207943597]
本研究は,7人のセラピストと10人のレイパーを対象に,ストローク後生存者の運動の質を評価するための実験を行った。
我々は2種類のAI説明なしで、彼らのパフォーマンス、タスクの合意レベル、AIへの依存を分析した。
我々の研究は、AIモデルの精度をより正確に見積り、間違ったAI出力に対する過度な信頼を減らすために、反事実的説明の可能性について論じている。
論文 参考訳(メタデータ) (2023-08-08T16:23:46Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - AI and Non AI Assessments for Dementia [11.5631890541199]
人工知能領域の最近の進歩は、様々な種類のAIによる認知症評価の開発につながっている。
本論文は,認知症認知のための既存の解決策を臨床医に説明するための文献のギャップを埋めるものである。
認知症に関するAIおよび非AIアセスメントに関する論文のレビューに続いて、AIと医療コミュニティの両方で、さまざまな認知症アセスメントに関する貴重な情報を提供する。
論文 参考訳(メタデータ) (2023-06-30T03:28:47Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - To Trust or to Think: Cognitive Forcing Functions Can Reduce
Overreliance on AI in AI-assisted Decision-making [4.877174544937129]
AIによる意思決定支援ツールによってサポートされる人々は、しばしばAIに過度に依存します。
AIの決定に説明を加えることは、過度な信頼を減らすものではありません。
我々の研究は、人間の認知モチベーションが説明可能なAIソリューションの有効性を損なうことを示唆している。
論文 参考訳(メタデータ) (2021-02-19T00:38:53Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
モデル逆算評価スキームと関連するメトリクスを用いて、現状のAESモデルを評価する。
AESモデルは非常に過大評価されていることがわかった。質問の話題に関係のない内容の重い修正(25%まで)でさえ、モデルが生み出すスコアを低下させることはない。
論文 参考訳(メタデータ) (2020-07-14T03:49:43Z) - DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment
Prediction [67.91606509226132]
臨床試験は医薬品開発に不可欠であるが、高価で不正確で不十分な患者募集に苦しむことが多い。
DeepEnrollは、入力基準(タブラリデータ)を一致する推論のための共有潜在空間に共同でエンコードする、クロスモーダル推論学習モデルである。
論文 参考訳(メタデータ) (2020-01-22T17:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。