Dynamic compensation for pump-induced frequency shift in Kerr-cat qubit initialization
- URL: http://arxiv.org/abs/2408.14112v3
- Date: Thu, 10 Oct 2024 10:00:53 GMT
- Title: Dynamic compensation for pump-induced frequency shift in Kerr-cat qubit initialization
- Authors: Yifang Xu, Ziyue Hua, Weiting Wang, Yuwei Ma, Ming Li, Jiajun Chen, Jie Zhou, Xiaoxuan Pan, Lintao Xiao, Hongwei Huang, Weizhou Cai, Hao Ai, Yu-xi Liu, Chang-Ling Zou, Luyan Sun,
- Abstract summary: The noise-biased Kerr-cat qubit is an attractive candidate for fault-tolerant quantum computation.
Here, we propose and demonstrate a dynamic compensation method to mitigate the effect of PIFS.
We realize a stabilized Kerr-cat qubit and validate the advantages of the dynamic compensation method.
This work paves the way for scalable quantum processors that leverage the bias-preserving properties of Kerr-cat qubits.
- Score: 34.50064624081621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The noise-biased Kerr-cat qubit is an attractive candidate for fault-tolerant quantum computation; however, its initialization faces challenges due to the squeezing pump-induced frequency shift (PIFS). Here, we propose and demonstrate a dynamic compensation method to mitigate the effect of PIFS during the Kerr-cat qubit initialization. Utilizing a novel nonlinearity-engineered triple-loop SQUID device, we realize a stabilized Kerr-cat qubit and validate the advantages of the dynamic compensation method by improving the initialization fidelity from 57% to 78%, with a projected fidelity of 91% after excluding state preparation and measurement errors. Our results not only advance the practical implementation of Kerr-cat qubits, but also provide valuable insights into the fundamental adiabatic dynamics of these systems. This work paves the way for scalable quantum processors that leverage the bias-preserving properties of Kerr-cat qubits.
Related papers
- Compressed-sensing Lindbladian quantum tomography with trapped ions [44.99833362998488]
Characterizing the dynamics of quantum systems is a central task for the development of quantum information processors.
We propose two different improvements of Lindbladian quantum tomography (LQT) that alleviate previous shortcomings.
arXiv Detail & Related papers (2024-03-12T09:58:37Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Alleviating Barren Plateaus in Parameterized Quantum Machine Learning
Circuits: Investigating Advanced Parameter Initialization Strategies [4.169604865257672]
When with random parameter values, quantum quantum circuits (PQCs) often exhibit barren plateaus (BP)
BPs are vanishing gradients with an increasing number of qubits, hinder optimization in quantum algorithms.
In this paper, we analyze the impact of state-of-the-art parameter initialization strategies from classical machine learning in random PQCs.
arXiv Detail & Related papers (2023-11-22T08:07:53Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - Feedback-based active reset of a spin qubit in silicon [0.0]
We demonstrate active reset of a silicon spin qubit using feedback control.
The active reset is based on quantum non-demolition readout of the qubit and feedback according to the readout results.
arXiv Detail & Related papers (2022-09-06T07:17:51Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Dispersive qubit readout with machine learning [0.08399688944263842]
Open quantum systems can undergo dissipative phase transitions, and their critical behavior can be exploited in sensing applications.
A recently introduced measurement protocol uses the parametric (two-photon driven) Kerr resonator's driven-dissipative phase transition to reach single-qubit detection fidelity of 99.9%.
We use machine learning-based classification algorithms to extract information from this critical dynamics.
arXiv Detail & Related papers (2021-12-10T04:25:43Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - A posteriori corrections to the Iterative Qubit Coupled Cluster method
to minimize the use of quantum resources in large-scale calculations [0.0]
We present a variety of a posteriori corrections to the iQCC energies to reduce the number of iterations to achieve the desired accuracy.
We demonstrate the utility and efficiency of our approach numerically on the examples of 10-qubit N$$ molecule, the 24-qubit H$$O stretch, and 56-qubit singlet-triplet gap calculations.
arXiv Detail & Related papers (2020-09-28T20:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.