論文の概要: Hierarchical Learning and Computing over Space-Ground Integrated Networks
- arxiv url: http://arxiv.org/abs/2408.14116v1
- Date: Mon, 26 Aug 2024 09:05:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:33:14.534168
- Title: Hierarchical Learning and Computing over Space-Ground Integrated Networks
- Title(参考訳): 宇宙空間統合ネットワークにおける階層的学習と計算
- Authors: Jingyang Zhu, Yuanming Shi, Yong Zhou, Chunxiao Jiang, Linling Kuang,
- Abstract要約: 地上IoTデバイス上で,局所的に訓練されたモデルに対してグローバルアグリゲーションサービスを提供するための階層的学習・計算フレームワークを提案する。
モデルアグリゲーションのネットワークエネルギー問題を定式化し、これはDST問題であることが判明した。
代用有向グラフ上で最小スパンニングアーボラッセンスを求めることでDST問題を解決するためのトポロジカル・アウェア・エネルギ効率・ルーティング(TAEER)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 40.19542938629252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Space-ground integrated networks hold great promise for providing global connectivity, particularly in remote areas where large amounts of valuable data are generated by Internet of Things (IoT) devices, but lacking terrestrial communication infrastructure. The massive data is conventionally transferred to the cloud server for centralized artificial intelligence (AI) models training, raising huge communication overhead and privacy concerns. To address this, we propose a hierarchical learning and computing framework, which leverages the lowlatency characteristic of low-earth-orbit (LEO) satellites and the global coverage of geostationary-earth-orbit (GEO) satellites, to provide global aggregation services for locally trained models on ground IoT devices. Due to the time-varying nature of satellite network topology and the energy constraints of LEO satellites, efficiently aggregating the received local models from ground devices on LEO satellites is highly challenging. By leveraging the predictability of inter-satellite connectivity, modeling the space network as a directed graph, we formulate a network energy minimization problem for model aggregation, which turns out to be a Directed Steiner Tree (DST) problem. We propose a topologyaware energy-efficient routing (TAEER) algorithm to solve the DST problem by finding a minimum spanning arborescence on a substitute directed graph. Extensive simulations under realworld space-ground integrated network settings demonstrate that the proposed TAEER algorithm significantly reduces energy consumption and outperforms benchmarks.
- Abstract(参考訳): 地上統合ネットワークは、特にIoT(Internet of Things)デバイスによって大量の貴重なデータが生成される遠隔地では、地球上の通信インフラが欠如している。
大量のデータは従来,集中型人工知能(AI)モデルのトレーニングのためにクラウドサーバに転送される。
そこで本研究では,低軌道(LEO)衛星の低遅延特性と静止軌道(GEO)衛星のグローバルカバレッジを活用し,地上IoTデバイス上で局所的に訓練されたモデルに対するグローバルアグリゲーションサービスを提供する階層型学習・計算フレームワークを提案する。
衛星ネットワークトポロジの時間変化とLEO衛星のエネルギー制約のため、LEO衛星上の地上機器から受信したローカルモデルを効率的に集約することは極めて困難である。
衛星間接続の予測可能性を活用し、空間ネットワークを有向グラフとしてモデル化することにより、モデル集約のためのネットワークエネルギー最小化問題を定式化し、これはDST問題であることが判明した。
代用有向グラフ上で最小スパンニングアーボラッセンスを求めることでDST問題を解決するためのトポロジカル・アウェア・エネルギ効率・ルーティング(TAEER)アルゴリズムを提案する。
実世界の宇宙空間統合ネットワーク環境下での大規模なシミュレーションにより,提案したTAEERアルゴリズムはエネルギー消費を大幅に削減し,ベンチマークを上回る性能を示す。
関連論文リスト
- Brain-Inspired Decentralized Satellite Learning in Space Computing Power Networks [42.67808523367945]
Space Computing Power Networks (Space-CPN) は、衛星の計算能力を調整し、オンボードのデータ処理を可能にする、有望なアーキテクチャとして登場した。
本稿では,ニューロモルフィックコンピューティングアーキテクチャがサポートするスパイクニューラルネットワーク(SNN)をオンボードデータ処理に適用することを提案する。
我々は分散型ニューロモルフィック学習フレームワークを提案し、通信効率の良い平面間モデルアグリゲーション法を開発した。
論文 参考訳(メタデータ) (2025-01-27T12:29:47Z) - Distributed satellite information networks: Architecture, enabling technologies, and trends [56.747473208256174]
分散衛星情報ネットワーク(DSIN)は、多様な衛星システム間での情報ギャップを埋める革新的なアーキテクチャとして登場した。
この調査はまず、DSINの革新的なネットワークアーキテクチャに関する深い議論を提供する。
DSINは、ネットワークの不均一性、予測不可能なチャネルダイナミクス、スパースリソース、分散コラボレーションフレームワークといった課題に直面している。
論文 参考訳(メタデータ) (2024-12-17T06:44:05Z) - SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
資源効率の高い衛星支援ヘテロジニアスFLフレームワークであるSatFedを提案する。
SatFedは、高度に制約された衛星地上帯域の利用を最適化するために、鮮度に基づくモデルの優先順位付けキューを実装している。
実世界のLEO衛星ネットワークを用いた実験により、SatFedは最先端のベンチマークよりも優れた性能と堅牢性を発揮することが示された。
論文 参考訳(メタデータ) (2024-09-20T13:44:00Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
SAGINの助けを借りてAIモデルをトレーニングすることは、高度に制約されたネットワークトポロジ、非効率なデータ転送、プライバシー問題といった課題に直面している。
まず,SAGINのための新しいトポロジ対応フェデレーション学習フレームワーク,すなわちOlive Branch Learning (OBL)を提案する。
我々はOBLフレームワークとCNASAアルゴリズムを拡張し、より複雑なマルチ軌道衛星ネットワークに適応する。
論文 参考訳(メタデータ) (2022-12-02T14:51:42Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。