論文の概要: Brain-Inspired Decentralized Satellite Learning in Space Computing Power Networks
- arxiv url: http://arxiv.org/abs/2501.15995v1
- Date: Mon, 27 Jan 2025 12:29:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:53:49.949477
- Title: Brain-Inspired Decentralized Satellite Learning in Space Computing Power Networks
- Title(参考訳): 宇宙コンピューティングパワーネットワークにおけるブレインインスパイアされた分散型衛星学習
- Authors: Peng Yang, Ting Wang, Haibin Cai, Yuanming Shi, Chunxiao Jiang, Linling Kuang,
- Abstract要約: Space Computing Power Networks (Space-CPN) は、衛星の計算能力を調整し、オンボードのデータ処理を可能にする、有望なアーキテクチャとして登場した。
本稿では,ニューロモルフィックコンピューティングアーキテクチャがサポートするスパイクニューラルネットワーク(SNN)をオンボードデータ処理に適用することを提案する。
我々は分散型ニューロモルフィック学習フレームワークを提案し、通信効率の良い平面間モデルアグリゲーション法を開発した。
- 参考スコア(独自算出の注目度): 42.67808523367945
- License:
- Abstract: Satellite networks are able to collect massive space information with advanced remote sensing technologies, which is essential for real-time applications such as natural disaster monitoring. However, traditional centralized processing by the ground server incurs a severe timeliness issue caused by the transmission bottleneck of raw data. To this end, Space Computing Power Networks (Space-CPN) emerges as a promising architecture to coordinate the computing capability of satellites and enable on board data processing. Nevertheless, due to the natural limitations of solar panels, satellite power system is difficult to meet the energy requirements for ever-increasing intelligent computation tasks of artificial neural networks. To tackle this issue, we propose to employ spiking neural networks (SNNs), which is supported by the neuromorphic computing architecture, for on-board data processing. The extreme sparsity in its computation enables a high energy efficiency. Furthermore, to achieve effective training of these on-board models, we put forward a decentralized neuromorphic learning framework, where a communication-efficient inter-plane model aggregation method is developed with the inspiration from RelaySum. We provide a theoretical analysis to characterize the convergence behavior of the proposed algorithm, which reveals a network diameter related convergence speed. We then formulate a minimum diameter spanning tree problem on the inter-plane connectivity topology and solve it to further improve the learning performance. Extensive experiments are conducted to evaluate the superiority of the proposed method over benchmarks.
- Abstract(参考訳): 衛星ネットワークは、自然災害監視などのリアルタイムアプリケーションに欠かせない高度なリモートセンシング技術を用いて、膨大な宇宙情報を収集することができる。
しかし、地上サーバによる従来の集中処理は、生データの送信ボトルネックに起因する厳しいタイムライン問題を引き起こしている。
この目的のために、スペース・コンピューティング・パワー・ネットワーク(Space-CPN)は、衛星の計算能力を調整し、オンボードのデータ処理を可能にする、有望なアーキテクチャとして登場した。
それでも、ソーラーパネルの自然の限界のため、人工衛星の電力システムは、人工知能の知的な計算タスクを継続的に増加させるエネルギー要件を満たすことは困難である。
この問題に対処するために,我々は,ニューロモルフィックコンピューティングアーキテクチャがサポートするスパイクニューラルネットワーク(SNN)をオンボードデータ処理に採用することを提案する。
計算の極端な間隔は、高いエネルギー効率を実現する。
さらに、これらの車載モデルの効果的な訓練を実現するために、RelaySum のインスピレーションを得て、通信効率の良い平面間モデル集約法を開発する分散ニューロモルフィック学習フレームワークを提案する。
本稿では,提案アルゴリズムの収束挙動を特徴付ける理論的解析を行い,ネットワーク直径関連収束速度を明らかにする。
次に、平面間接続トポロジー上の最小径幅木問題を定式化し、学習性能をさらに向上させる。
提案手法がベンチマークよりも優れていることを評価するため,大規模な実験を行った。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Hierarchical Learning and Computing over Space-Ground Integrated Networks [40.19542938629252]
地上IoTデバイス上で,局所的に訓練されたモデルに対してグローバルアグリゲーションサービスを提供するための階層的学習・計算フレームワークを提案する。
モデルアグリゲーションのネットワークエネルギー問題を定式化し、これはDST問題であることが判明した。
代用有向グラフ上で最小スパンニングアーボラッセンスを求めることでDST問題を解決するためのトポロジカル・アウェア・エネルギ効率・ルーティング(TAEER)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-26T09:05:43Z) - Toward Autonomous Cooperation in Heterogeneous Nanosatellite
Constellations Using Dynamic Graph Neural Networks [0.0]
本稿では,星座とCPを動的ネットワークとしてモデル化し,その課題を克服する新しい手法を提案する。
トレーニングされたニューラルネットワークは、平均絶対誤差3.6分でネットワーク遅延を予測することができる。
シミュレーションの結果,提案手法は大型衛星ネットワークの接触計画の設計に成功し,従来のアプローチと同様,遅延率を29.1%向上させることができた。
論文 参考訳(メタデータ) (2024-03-01T17:26:02Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
スパイキングニューラルネットワーク(SNN)は、幅広い信号処理アプリケーションのために、ディープニューラルネットワークの魅力的な代替品となっている。
我々は、低レイテンシとエネルギー効率のSNNを効率的に訓練し、拡張するためのアルゴリズムと最適化の進歩について述べる。
デプロイ可能なSNNシステム構築における研究の今後の可能性について論じる。
論文 参考訳(メタデータ) (2023-12-02T19:47:00Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
SAGINの助けを借りてAIモデルをトレーニングすることは、高度に制約されたネットワークトポロジ、非効率なデータ転送、プライバシー問題といった課題に直面している。
まず,SAGINのための新しいトポロジ対応フェデレーション学習フレームワーク,すなわちOlive Branch Learning (OBL)を提案する。
我々はOBLフレームワークとCNASAアルゴリズムを拡張し、より複雑なマルチ軌道衛星ネットワークに適応する。
論文 参考訳(メタデータ) (2022-12-02T14:51:42Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices [2.28438857884398]
本稿では,分散推論のためのニューラルネットワークを分離するために,モデル並列性を利用する新しい手法を提案する。
デバイスの適切な仕様とモデルの構成の下で、エッジクラスタ上の大規模ニューラルネットワークの推論が分散し、加速可能であることを示す実験を行った。
論文 参考訳(メタデータ) (2021-11-03T19:30:28Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。