論文の概要: EMDFNet: Efficient Multi-scale and Diverse Feature Network for Traffic Sign Detection
- arxiv url: http://arxiv.org/abs/2408.14189v1
- Date: Mon, 26 Aug 2024 11:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:13:24.759326
- Title: EMDFNet: Efficient Multi-scale and Diverse Feature Network for Traffic Sign Detection
- Title(参考訳): EMDFNet:交通信号検出のための効率的なマルチスケール・多角的特徴ネットワーク
- Authors: Pengyu Li, Chenhe Liu, Tengfei Li, Xinyu Wang, Shihui Zhang, Dongyang Yu,
- Abstract要約: 小さな物体、特に交通標識の検出は、物体の検出と自律運転において重要なサブタスクである。
これらの課題に乗じて,EMDFNet(Efficient Multi-scale and Diverse Feature Network)という新しいオブジェクト検出ネットワークを提案する。
EMDFNetはAugmented Shortcut ModuleとEfficient Hybridを統合し、上記の問題に同時に対処する。
- 参考スコア(独自算出の注目度): 11.525603303355268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of small objects, particularly traffic signs, is a critical subtask within object detection and autonomous driving. Despite the notable achievements in previous research, two primary challenges persist. Firstly, the main issue is the singleness of feature extraction. Secondly, the detection process fails to effectively integrate with objects of varying sizes or scales. These issues are also prevalent in generic object detection. Motivated by these challenges, in this paper, we propose a novel object detection network named Efficient Multi-scale and Diverse Feature Network (EMDFNet) for traffic sign detection that integrates an Augmented Shortcut Module and an Efficient Hybrid Encoder to address the aforementioned issues simultaneously. Specifically, the Augmented Shortcut Module utilizes multiple branches to integrate various spatial semantic information and channel semantic information, thereby enhancing feature diversity. The Efficient Hybrid Encoder utilizes global feature fusion and local feature interaction based on various features to generate distinctive classification features by integrating feature information in an adaptable manner. Extensive experiments on the Tsinghua-Tencent 100K (TT100K) benchmark and the German Traffic Sign Detection Benchmark (GTSDB) demonstrate that our EMDFNet outperforms other state-of-the-art detectors in performance while retaining the real-time processing capabilities of single-stage models. This substantiates the effectiveness of EMDFNet in detecting small traffic signs.
- Abstract(参考訳): 小さな物体、特に交通標識の検出は、物体の検出と自律運転において重要なサブタスクである。
以前の研究で顕著な成果があったにも拘わらず、2つの主要な課題が続いている。
まず第一に、機能抽出の単一性である。
第二に、検出プロセスは、さまざまなサイズやスケールのオブジェクトと効果的に統合できない。
これらの問題は、ジェネリックオブジェクトの検出にも有効である。
本稿では,これらの課題に乗じて,拡張ショートカットモジュールと効率的なハイブリッドエンコーダを統合した交通信号検出のための,EMDFNet(Efficient Multi-scale and Diverse Feature Network)という新しいオブジェクト検出ネットワークを提案する。
具体的には、Augmented Shortcut Moduleは複数のブランチを使用して、様々な空間意味情報とチャネル意味情報を統合し、特徴の多様性を高める。
効率的なハイブリッドエンコーダは、様々な特徴に基づくグローバルな特徴融合と局所的な特徴相互作用を利用して、特徴情報を適応的な方法で統合して特徴分類特徴を生成する。
Tsinghua-Tencent 100K(TT100K)ベンチマークとドイツ交通信号検出ベンチマーク(GTSDB)に関する大規模な実験は、EMDFNetがシングルステージモデルのリアルタイム処理能力を保ちながら、他の最先端検出器よりもパフォーマンスが優れていることを示した。
これにより,EMDFNetによる小信号検出の有効性が実証された。
関連論文リスト
- YOLO-TS: Real-Time Traffic Sign Detection with Enhanced Accuracy Using Optimized Receptive Fields and Anchor-Free Fusion [15.571409945909243]
本稿では,新しいリアルタイムかつ効率的な道路標識検出ネットワーク YOLO-TS を提案する。
このネットワークは,マルチスケール特徴写像の受容場を最適化することにより,性能を著しく向上させる。
我々の革新的な機能融合戦略は、アンカーフリー手法の柔軟性を活用し、精度と速度の両面で顕著な向上を実現している。
論文 参考訳(メタデータ) (2024-10-22T16:19:55Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - Detection-Rate-Emphasized Multi-objective Evolutionary Feature Selection for Network Intrusion Detection [21.104686670216445]
ネットワーク侵入検出における特徴選択問題を3目的最適化問題としてモデル化するDR-MOFSを提案する。
ほとんどの場合、提案手法は従来の手法、すなわちより少ない特徴、より高い精度と検出率を達成できる。
論文 参考訳(メタデータ) (2024-06-13T14:42:17Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Improved YOLOv5 network for real-time multi-scale traffic sign detection [4.5598087061051755]
本稿では,アダプティブアテンションモジュール (AAM) と機能拡張モジュール (FEM) を利用して特徴マップ生成の過程での情報損失を低減する機能ピラミッドモデル AF-FPN を提案する。
YOLOv5の本来の特徴ピラミッドネットワークをAF-FPNに置き換え、YOLOv5ネットワークのマルチスケールターゲットの検出性能を向上させる。
論文 参考訳(メタデータ) (2021-12-16T11:02:12Z) - Specificity-preserving RGB-D Saliency Detection [103.3722116992476]
本稿では,RGB-Dサリエンシ検出のための特異性保存ネットワーク(SP-Net)を提案する。
2つのモダリティ特化ネットワークと共有学習ネットワークを採用し、個別および共有唾液マップを生成する。
6つのベンチマークデータセットの実験では、SP-Netは他の最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2021-08-18T14:14:22Z) - Multi-object Tracking with a Hierarchical Single-branch Network [31.680667324595557]
階層的な単一ブランチネットワークに基づくオンライン多目的追跡フレームワークを提案する。
新たなiHOIM損失関数は,2つのサブタスクの目的を統一し,より優れた検出性能を実現する。
MOT16とMOT20データセットの実験結果から,最先端のトラッキング性能が達成できた。
論文 参考訳(メタデータ) (2021-01-06T12:14:58Z) - AFD-Net: Adaptive Fully-Dual Network for Few-Shot Object Detection [8.39479809973967]
Few-shot Object Detection (FSOD) は、未確認の物体に迅速に適応できる検出器の学習を目的としている。
既存の方法では、共有コンポーネントを用いて分類と局所化のサブタスクを実行することで、この問題を解決している。
本稿では,2つのサブタスクの明示的な分解を考慮し,両者の情報を活用して特徴表現の強化を図ることを提案する。
論文 参考訳(メタデータ) (2020-11-30T10:21:32Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要な問題である。
本稿では,FairMOTと呼ばれる,アンカーフリーなオブジェクト検出アーキテクチャCenterNetをベースとした,シンプルかつ効果的なアプローチを提案する。
このアプローチは、検出と追跡の両方において高い精度を達成する。
論文 参考訳(メタデータ) (2020-04-04T08:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。