論文の概要: A Joint Learning Model with Variational Interaction for Multilingual Program Translation
- arxiv url: http://arxiv.org/abs/2408.14515v1
- Date: Sun, 25 Aug 2024 11:33:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 17:51:48.971733
- Title: A Joint Learning Model with Variational Interaction for Multilingual Program Translation
- Title(参考訳): 多言語プログラム翻訳のための変分相互作用を伴う共同学習モデル
- Authors: Yali Du, Hui Sun, Ming Li,
- Abstract要約: プログラム翻訳のための変分相互作用(VIM-PT)は、言語間の多言語プログラム翻訳のための統一モデルを共同で訓練する生成的アプローチである。
VIM-PTは、変分推論と新しい下界との相互作用情報を用いて、コードを言語共有と言語固有の特徴に分解し、条件付き生成を通じてプログラム翻訳を行う。
- 参考スコア(独自算出の注目度): 10.77747590700758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Programs implemented in various programming languages form the foundation of software applications. To alleviate the burden of program migration and facilitate the development of software systems, automated program translation across languages has garnered significant attention. Previous approaches primarily focus on pairwise translation paradigms, learning translation between pairs of languages using bilingual parallel data. However, parallel data is difficult to collect for some language pairs, and the distribution of program semantics across languages can shift, posing challenges for pairwise program translation. In this paper, we argue that jointly learning a unified model to translate code across multiple programming languages is superior to separately learning from bilingual parallel data. We propose Variational Interaction for Multilingual Program Translation~(VIM-PT), a disentanglement-based generative approach that jointly trains a unified model for multilingual program translation across multiple languages. VIM-PT disentangles code into language-shared and language-specific features, using variational inference and interaction information with a novel lower bound, then achieves program translation through conditional generation. VIM-PT demonstrates four advantages: 1) captures language-shared information more accurately from various implementations and improves the quality of multilingual program translation, 2) mines and leverages the capability of non-parallel data, 3) addresses the distribution shift of program semantics across languages, 4) and serves as a unified model, reducing deployment complexity.
- Abstract(参考訳): 様々なプログラミング言語で実装されたプログラムは、ソフトウェアアプリケーションの基盤となる。
プログラムマイグレーションの負担を軽減し、ソフトウェアシステムの開発を促進するため、言語間の自動プログラム翻訳が注目されている。
それまでのアプローチは、主に対訳パラダイム、二言語並列データを用いた対言語間の翻訳学習に重点を置いていた。
しかし、並列データはいくつかの言語ペアで収集することは困難であり、言語間のプログラムセマンティクスの分配はシフトし、ペアワイズプログラム翻訳の課題を提起する。
本稿では,複数の言語にまたがってコードを翻訳する統一モデルを共同で学習することが,バイリンガル並列データから個別に学習するよりも優れていることを論じる。
本稿では,複数言語をまたがる多言語プログラム翻訳の統一モデルを共同で訓練する,多言語プログラム翻訳のための変分相互作用~(VIM-PT)を提案する。
VIM-PTは、変分推論と新しい下界との相互作用情報を用いて、コードを言語共有と言語固有の特徴に分解し、条件付き生成を通じてプログラム翻訳を行う。
VIM-PTは以下の4つの利点を示す。
1)様々な実装から言語共有情報をより正確に取得し,多言語プログラム翻訳の質を向上させる。
2)非並列データの機能をマイニングし活用すること。
3)言語間のプログラムセマンティクスの分散シフトに対処する。
統合モデルとして機能し、デプロイメントの複雑さを低減します。
関連論文リスト
- Improving Multilingual Neural Machine Translation by Utilizing Semantic and Linguistic Features [18.76505158652759]
複数の言語間の意味的特徴と言語的特徴を利用して多言語翻訳を強化することを提案する。
エンコーダ側では,意味的特徴と言語的特徴を両立させることにより,エンコーダ表現を整合させる非係合学習タスクを導入する。
デコーダ側では、言語エンコーダを利用して低レベル言語機能を統合し、ターゲット言語生成を支援する。
論文 参考訳(メタデータ) (2024-08-02T17:10:12Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - LVP-M3: Language-aware Visual Prompt for Multilingual Multimodal Machine
Translation [94.33019040320507]
マルチモーダル機械翻訳(MMT)は、視覚的特徴を持つテキストのみの翻訳を強化することに焦点を当てている。
最近の進歩は、各言語ペアごとに別々のモデルをトレーニングすることに苦慮している。
7つの言語をカバーする2つのMultilingual MMTベンチマークデータセットを確立することで,Multilingual MMTタスクを提案する。
論文 参考訳(メタデータ) (2022-10-19T12:21:39Z) - Bootstrapping Multilingual Semantic Parsers using Large Language Models [28.257114724384806]
複数の言語にまたがって英語データセットを転送するTranslation-trainパラダイムは、タスク固有の多言語モデルをトレーニングする上で重要な要素である。
本稿では,多言語意味解析の課題を考察し,英語データセットを複数言語に翻訳する大規模言語モデル(LLM)の有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2022-10-13T19:34:14Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking [84.50302759362698]
我々は、事前訓練された多言語モデルの中間微調整により、伝達学習プロセスを強化する。
我々は、パラレルおよび会話型の映画字幕データセットを使用して、言語間中間タスクを設計する。
パラレルなMultiWoZデータセットとMultilingual WoZデータセットの精度を20%向上させる。
論文 参考訳(メタデータ) (2021-09-28T11:22:38Z) - Cross-Lingual Adaptation for Type Inference [29.234418962960905]
弱い型付き言語間で深層学習に基づく型推論を行うための言語間適応フレームワークPLATOを提案する。
強く型付けされた言語からのデータを活用することで、PLATOは、バックボーンのクロスプログラミング言語モデルの難易度を改善する。
論文 参考訳(メタデータ) (2021-07-01T00:20:24Z) - Multilingual Transfer Learning for Code-Switched Language and Speech
Neural Modeling [12.497781134446898]
本稿では,言語非依存なマルチタスク学習手法を提案することにより,言語理論のデータ不足と限界に対処する。
まず,メタラーニングに基づくメタトランスファー学習を提案する。そこでは,高音源単言語音声データから,コードスイッチング領域への情報抽出を行う。
第2に,他の言語で学習した有用な知識を得ることにより,コードスイッチングデータを効果的に表現するための,多言語メタエム手法を提案する。
第3に,言語モデルへの伝達学習戦略として構文情報を統合するために,マルチタスク学習を導入する。
論文 参考訳(メタデータ) (2021-04-13T14:49:26Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
我々は,mBERTを微調整するための多言語コードスイッチングデータを生成するためのデータ拡張フレームワークを提案する。
既存の研究と比較すると,本手法は訓練にバイリンガル文を頼らず,複数の対象言語に対して1つの学習プロセスしか必要としない。
論文 参考訳(メタデータ) (2020-06-11T13:15:59Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。