Circumventing Traps in Analog Quantum Machine Learning Algorithms Through Co-Design
- URL: http://arxiv.org/abs/2408.14697v1
- Date: Mon, 26 Aug 2024 23:52:20 GMT
- Title: Circumventing Traps in Analog Quantum Machine Learning Algorithms Through Co-Design
- Authors: Rodrigo Araiza Bravo, Jorge Garcia Ponce, Hong-ye Hu, Susanne F. Yelin,
- Abstract summary: We show how to co-design AQML algorithms for unitary evolution simulation using the ansatz's Magnus expansion.
We conclude that such co-design is necessary to ensure the applicability of AQML algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning QML algorithms promise to deliver near-term, applicable quantum computation on noisy, intermediate-scale systems. While most of these algorithms leverage quantum circuits for generic applications, a recent set of proposals, called analog quantum machine learning (AQML) algorithms, breaks away from circuit-based abstractions and favors leveraging the natural dynamics of quantum systems for computation, promising to be noise-resilient and suited for specific applications such as quantum simulation. Recent AQML studies have called for determining best ansatz selection practices and whether AQML algorithms have trap-free landscapes based on theory from quantum optimal control (QOC). We address this call by systematically studying AQML landscapes on two models: those admitting black-boxed expressivity and those tailored to simulating a specific unitary evolution. Numerically, the first kind exhibits local traps in their landscapes, while the second kind is trap-free. However, both kinds violate QOC theory's key assumptions for guaranteeing trap-free landscapes. We propose a methodology to co-design AQML algorithms for unitary evolution simulation using the ansatz's Magnus expansion. We show favorable convergence in simulating dynamics with applications to metrology and quantum chemistry. We conclude that such co-design is necessary to ensure the applicability of AQML algorithms.
Related papers
- Multi-reference Quantum Davidson Algorithm for Quantum Dynamics [3.3869539907606603]
Quantum Krylov Subspace (QKS) methods have been developed, enhancing the ability to perform accelerated simulations on noisy intermediate-scale quantum computers.
We introduce and evaluate two QKS methods derived from the QDavidson algorithm, a novel approach for determining the ground and excited states of many-body systems.
arXiv Detail & Related papers (2024-06-12T22:30:52Z) - Compact quantum algorithms for time-dependent differential equations [0.0]
We build on an idea based on linear combination of unitaries to simulate non-unitary, non-Hermitian quantum systems.
We generate hybrid quantum-classical algorithms that efficiently perform iterative matrix-vector multiplication and matrix inversion operations.
arXiv Detail & Related papers (2024-05-16T02:14:58Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Two quantum algorithms for solving the one-dimensional
advection-diffusion equation [0.0]
Two quantum algorithms are presented for the numerical solution of a linear one-dimensional advection-diffusion equation with periodic boundary conditions.
Their accuracy and performance with increasing qubit number are compared point-by-point with each other.
arXiv Detail & Related papers (2023-12-30T21:23:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - NISQ Algorithm for Hamiltonian Simulation via Truncated Taylor Series [0.0]
Noisy intermediate-scale quantum (NISQ) algorithms aim at effectively using the currently available quantum hardware.
We propose a new algorithm, truncated Taylor quantum simulator (TTQS), that shares the advantages of existing algorithms and alleviates some of the shortcomings.
Our algorithm does not have any classical-quantum feedback loop and bypasses the barren plateau problem by construction.
arXiv Detail & Related papers (2021-03-09T15:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.