Toward Mixed Analog-Digital Quantum Signal Processing: Quantum AD/DA Conversion and the Fourier Transform
- URL: http://arxiv.org/abs/2408.14729v1
- Date: Tue, 27 Aug 2024 01:53:57 GMT
- Title: Toward Mixed Analog-Digital Quantum Signal Processing: Quantum AD/DA Conversion and the Fourier Transform
- Authors: Yuan Liu, John M. Martyn, Jasmine Sinanan-Singh, Kevin C. Smith, Steven M. Girvin, Isaac L. Chuang,
- Abstract summary: We develop a new paradigm of mixed analog-digital quantum signal processing.
We show how it naturally enables analog-digital conversion of quantum signals.
We then show that such quantum analog-digital conversion enables new implementations of quantum algorithms on CV-DV hardware.
- Score: 3.0182150055236114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Signal processing stands as a pillar of classical computation and modern information technology, applicable to both analog and digital signals. Recently, advancements in quantum information science have suggested that quantum signal processing (QSP) can enable more powerful signal processing capabilities. However, the developments in QSP have primarily leveraged \emph{digital} quantum resources, such as discrete-variable (DV) systems like qubits, rather than \emph{analog} quantum resources, such as continuous-variable (CV) systems like quantum oscillators. Consequently, there remains a gap in understanding how signal processing can be performed on hybrid CV-DV quantum computers. Here we address this gap by developing a new paradigm of mixed analog-digital QSP. We demonstrate the utility of this paradigm by showcasing how it naturally enables analog-digital conversion of quantum signals -- specifically, the transfer of states between DV and CV quantum systems. We then show that such quantum analog-digital conversion enables new implementations of quantum algorithms on CV-DV hardware. This is exemplified by realizing the quantum Fourier transform of a state encoded on qubits via the free-evolution of a quantum oscillator, albeit with a runtime exponential in the number of qubits due to information theoretic arguments. Collectively, this work marks a significant step forward in hybrid CV-DV quantum computation, providing a foundation for scalable analog-digital signal processing on quantum processors.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Microwave signal processing using an analog quantum reservoir computer [5.236242306967409]
We show how a superconducting circuit can be used as an analog quantum reservoir for a variety of classification tasks.
Our work does not attempt to address the question of whether QRCs could provide a quantum computational advantage.
arXiv Detail & Related papers (2023-12-26T18:54:36Z) - Sequential quantum simulation of spin chains with a single circuit QED
device [5.841833052422423]
Quantum simulation of many-body systems in materials science and chemistry are promising application areas for quantum computers.
We show how a single-circuit quantum electrodynamics device can be used to simulate the ground state of a highly-entangled quantum many-body spin chain.
We demonstrate that the large state space of the cavity can be used to replace multiple qubits in a qubit-only architecture, and could therefore simplify the design of quantum processors for materials simulation.
arXiv Detail & Related papers (2023-08-30T18:00:03Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - A Comparison of Encoding Techniques for an Analog Quantum Emulation
Device [0.0]
We show an analog quantum emulation device (AQED) where each qubit state is represented by a unique analog signal.
We realize the entire device on a UMC 180nm processing node and demonstrate the computational advantage of an AQED.
arXiv Detail & Related papers (2022-11-06T20:14:39Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum CDMA Communication Systems [9.992810060555813]
We introduce and discuss the fundamental principles of a novel quantum CDMA technique based on spectrally encoding and decoding of continuous-mode quantum light pulses.
We present the mathematical models of various QCDMA modules that are fundamental in describing an ideal and typical QCDMA system.
Our mathematical model is valuable in the signal design and data modulations of point-to-point quantum communications, quantum pulse shaping, and quantum radar signals and systems where the inputs are continuous mode quantum signals.
arXiv Detail & Related papers (2021-06-18T10:05:53Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.