論文の概要: Personalized Video Summarization using Text-Based Queries and Conditional Modeling
- arxiv url: http://arxiv.org/abs/2408.14743v1
- Date: Tue, 27 Aug 2024 02:43:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:14:31.874974
- Title: Personalized Video Summarization using Text-Based Queries and Conditional Modeling
- Title(参考訳): テキストベースのクエリと条件付きモデリングを用いたパーソナライズビデオ要約
- Authors: Jia-Hong Huang,
- Abstract要約: この論文は、テキストベースのクエリと条件付きモデリングを統合することで、ビデオ要約の強化を探求する。
精度やF1スコアなどの評価指標は、生成された要約の品質を評価する。
- 参考スコア(独自算出の注目度): 3.4447129363520337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of video content on platforms like YouTube and Vimeo presents significant challenges in efficiently locating relevant information. Automatic video summarization aims to address this by extracting and presenting key content in a condensed form. This thesis explores enhancing video summarization by integrating text-based queries and conditional modeling to tailor summaries to user needs. Traditional methods often produce fixed summaries that may not align with individual requirements. To overcome this, we propose a multi-modal deep learning approach that incorporates both textual queries and visual information, fusing them at different levels of the model architecture. Evaluation metrics such as accuracy and F1-score assess the quality of the generated summaries. The thesis also investigates improving text-based query representations using contextualized word embeddings and specialized attention networks. This enhances the semantic understanding of queries, leading to better video summaries. To emulate human-like summarization, which accounts for both visual coherence and abstract factors like storyline consistency, we introduce a conditional modeling approach. This method uses multiple random variables and joint distributions to capture key summarization components, resulting in more human-like and explainable summaries. Addressing data scarcity in fully supervised learning, the thesis proposes a segment-level pseudo-labeling approach. This self-supervised method generates additional data, improving model performance even with limited human-labeled datasets. In summary, this research aims to enhance automatic video summarization by incorporating text-based queries, improving query representations, introducing conditional modeling, and addressing data scarcity, thereby creating more effective and personalized video summaries.
- Abstract(参考訳): YouTubeやVimeoなどのプラットフォームでの動画コンテンツの拡散は、関連情報を効率的に見つける上で大きな課題となっている。
自動映像要約は, キーコンテンツを凝縮した形で抽出し提示することで, この問題に対処することを目的としている。
この論文は、テキストベースのクエリと条件モデリングを統合して、ユーザのニーズに合わせて要約をカスタマイズすることで、ビデオ要約の強化を探求する。
従来の手法では、個々の要件に合致しない固定的な要約を生成することが多い。
そこで本研究では,テキストクエリと視覚情報の両方を組み込んだマルチモーダル深層学習手法を提案する。
精度やF1スコアなどの評価指標は、生成された要約の品質を評価する。
この論文は、文脈化された単語埋め込みと特別な注意ネットワークを用いたテキストベースのクエリ表現の改善についても検討している。
これにより、クエリのセマンティック理解が向上し、ビデオ要約が向上する。
ストーリーラインの一貫性のような視覚的コヒーレンスと抽象的要因の両方を考慮に入れた人間的な要約をエミュレートするために,条件付きモデリングアプローチを導入する。
この方法は、複数の確率変数と結合分布を用いて鍵要約成分をキャプチャし、より人間らしく説明可能な要約をもたらす。
完全教師付き学習におけるデータの不足に対処するため、論文ではセグメントレベルの擬似ラベル方式を提案する。
この自己教師型手法は、人間のラベル付きデータセットが限られた場合でも、追加データを生成し、モデル性能を向上させる。
本研究の目的は,テキストベースのクエリを導入し,クエリ表現を改善し,条件付きモデリングを導入し,データの不足に対処することにより,より効果的でパーソナライズされたビデオ要約を作成することである。
関連論文リスト
- Your Interest, Your Summaries: Query-Focused Long Video Summarization [0.6041235048439966]
本稿では,ユーザクエリとビデオ要約を密接に関連付けることを目的とした,クエリ中心のビデオ要約に対するアプローチを提案する。
本稿では,本課題のために設計された新しいアプローチであるFCSNA-QFVS(FCSNA-QFVS)を提案する。
論文 参考訳(メタデータ) (2024-10-17T23:37:58Z) - GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
本稿では,テキストとビデオ間の固有情報不均衡に対処するため,新しいデータ中心型アプローチであるGeneralized Query Expansion (GQE)を提案する。
ビデオをショートクリップにアダプティブに分割し、ゼロショットキャプションを採用することで、GQEはトレーニングデータセットを総合的なシーン記述で強化する。
GQEは、MSR-VTT、MSVD、SMDC、VATEXなど、いくつかのベンチマークで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-14T01:24:09Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
本稿では,大規模ビデオ要約データセットを生成するための,自動化されたスケーラブルなパイプラインを提案する。
我々は既存のアプローチの限界を分析し、それらに効果的に対処する新しいビデオ要約モデルを提案する。
我々の研究は、プロが注釈付けした高品質の要約を持つ1200本の長編ビデオを含む新しいベンチマークデータセットも提示した。
論文 参考訳(メタデータ) (2024-04-04T11:59:06Z) - Conditional Modeling Based Automatic Video Summarization [70.96973928590958]
ビデオ要約の目的は、全体を伝えるのに必要な重要な情報を保持しながら、自動的にビデオを短縮することである。
映像要約法は視覚的連続性や多様性などの視覚的要因に依存しており、ビデオの内容を完全に理解するには不十分である。
映像要約への新たなアプローチは、人間が地上の真実のビデオ要約を作成する方法から得られる知見に基づいて提案されている。
論文 参考訳(メタデータ) (2023-11-20T20:24:45Z) - Query-based Video Summarization with Pseudo Label Supervision [19.229722872058055]
手動でラベル付けされたクエリベースのビデオ要約のための既存のデータセットは、コストが高くて小さい。
セルフスーパービジョンは、プリテキストタスクを使用して、擬似ラベルで余分なデータを取得する方法を定義することで、データ空間の問題に対処することができる。
実験結果から,提案した映像要約アルゴリズムは最先端の性能を実現することがわかった。
論文 参考訳(メタデータ) (2023-07-04T22:28:17Z) - Learning Summary-Worthy Visual Representation for Abstractive
Summarization in Video [34.202514532882]
本稿では,抽象的な要約を容易にする要約価値のある視覚表現を学習するための新しいアプローチを提案する。
本手法は, クロスモーダル転写データと擬似要約から抽出した知識の両方から, 要約に値する情報を利用する。
論文 参考訳(メタデータ) (2023-05-08T16:24:46Z) - VideoXum: Cross-modal Visual and Textural Summarization of Videos [54.0985975755278]
我々は新しい共同ビデオとテキスト要約タスクを提案する。
目標は、短縮されたビデオクリップと、長いビデオから対応するテキスト要約の両方を生成することだ。
生成された短縮ビデオクリップとテキストナラティブは、セマンティックに適切に調整されるべきである。
論文 参考訳(メタデータ) (2023-03-21T17:51:23Z) - Video Summarization Based on Video-text Modelling [0.0]
ビデオのセマンティック表現を得るために,マルチモーダルな自己教師型学習フレームワークを提案する。
また,より優れた要約を生成するために,動画内の重要なコンテンツを段階的にピンポイントするプログレッシブな映像要約手法も導入する。
映像分類に基づく映像要約の質を客観的に評価する枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-07T15:21:46Z) - CLIP-It! Language-Guided Video Summarization [96.69415453447166]
この作業では、ジェネリックとクエリにフォーカスしたビデオ要約に対処する単一のフレームワークであるCLIP-Itを導入する。
本稿では,言語誘導型マルチモーダルトランスフォーマーを提案する。
本モデルは, 地道的な監督を伴わずに, 訓練により教師なしの設定に拡張することができる。
論文 参考訳(メタデータ) (2021-07-01T17:59:27Z) - Convolutional Hierarchical Attention Network for Query-Focused Video
Summarization [74.48782934264094]
本稿では、ユーザのクエリと長いビデオを入力として取り込む、クエリ中心のビデオ要約の課題に対処する。
本稿では,特徴符号化ネットワークとクエリ関連計算モジュールの2つの部分からなる畳み込み階層型注意ネットワーク(CHAN)を提案する。
符号化ネットワークでは,局所的な自己認識機構と問合せ対応のグローバルアテンション機構を備えた畳み込みネットワークを用いて,各ショットの視覚情報を学習する。
論文 参考訳(メタデータ) (2020-01-31T04:30:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。