論文の概要: Domain-decoupled Physics-informed Neural Networks with Closed-form Gradients for Fast Model Learning of Dynamical Systems
- arxiv url: http://arxiv.org/abs/2408.14951v1
- Date: Tue, 27 Aug 2024 10:54:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 14:03:32.032439
- Title: Domain-decoupled Physics-informed Neural Networks with Closed-form Gradients for Fast Model Learning of Dynamical Systems
- Title(参考訳): 動的システムの高速モデル学習のための閉形式勾配を持つ領域分離型物理インフォームニューラルネットワーク
- Authors: Henrik Krauss, Tim-Lukas Habich, Max Bartholdt, Thomas Seel, Moritz Schappler,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、物理方程式を用いて訓練され、データから学習することで、モデル化されていない効果を組み込むことができる。
本稿では、大規模で複雑な非線形力学系を扱う場合のPINCの現在の限界に対処するために、ドメイン分離された物理情報ニューラルネットワーク(DD-PINN)を導入する。
- 参考スコア(独自算出の注目度): 2.8730926763860687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) are trained using physical equations and can also incorporate unmodeled effects by learning from data. PINNs for control (PINCs) of dynamical systems are gaining interest due to their prediction speed compared to classical numerical integration methods for nonlinear state-space models, making them suitable for real-time control applications. We introduce the domain-decoupled physics-informed neural network (DD-PINN) to address current limitations of PINC in handling large and complex nonlinear dynamic systems. The time domain is decoupled from the feed-forward neural network to construct an Ansatz function, allowing for calculation of gradients in closed form. This approach significantly reduces training times, especially for large dynamical systems, compared to PINC, which relies on graph-based automatic differentiation. Additionally, the DD-PINN inherently fulfills the initial condition and supports higher-order excitation inputs, simplifying the training process and enabling improved prediction accuracy. Validation on three systems - a nonlinear mass-spring-damper, a five-mass-chain, and a two-link robot - demonstrates that the DD-PINN achieves significantly shorter training times. In cases where the PINC's prediction diverges, the DD-PINN's prediction remains stable and accurate due to higher physics loss reduction or use of a higher-order excitation input. The DD-PINN allows for fast and accurate learning of large dynamical systems previously out of reach for the PINC.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は物理方程式を用いて訓練されており、データから学習することで、モデル化されていない効果を組み込むこともできる。
動的システムの制御のためのPINN(PINC)は、非線形状態空間モデルに対する古典的な数値積分法と比較して予測速度から関心を集めており、リアルタイム制御に適している。
本稿では、大規模で複雑な非線形力学系を扱う場合のPINCの現在の限界に対処するために、ドメイン分離された物理情報ニューラルネットワーク(DD-PINN)を導入する。
時間領域はフィードフォワードニューラルネットワークから切り離され、アンザッツ関数を構築し、閉じた形で勾配を計算することができる。
このアプローチは、特に大規模力学系において、グラフベースの自動微分に依存するPINCと比較して、トレーニング時間を著しく短縮する。
さらに、DD-PINNは本質的に初期条件を満たし、高次励起入力をサポートし、トレーニングプロセスを簡素化し、予測精度を向上させる。
非線形マススプリングダンパー,5質量チェーン,2リンクロボットの3つのシステムに対する検証は,DD-PINNのトレーニング時間が大幅に短縮されたことを示す。
PINCの予測が分岐する場合、DD-PINNの予測は高い物理損失の低減や高次励起入力の使用により安定かつ正確である。
DD-PINNは、以前PINCに届かなかった大規模力学系の高速かつ正確な学習を可能にする。
関連論文リスト
- GradINN: Gradient Informed Neural Network [2.287415292857564]
物理情報ニューラルネットワーク(PINN)にヒントを得た手法を提案する。
GradINNは、システムの勾配に関する事前の信念を利用して、予測関数の勾配を全ての入力次元にわたって制限する。
非時間依存システムにまたがる多様な問題に対するGradINNの利点を実証する。
論文 参考訳(メタデータ) (2024-09-03T14:03:29Z) - Improved physics-informed neural network in mitigating gradient related failures [11.356695216531328]
物理インフォームドニューラルネットワーク(PINN)は、高度なデータ駆動技術で基本的な物理原理を統合する。
PINNは勾配流の剛性に悩まされ、予測能力が制限される。
本稿では,勾配関連障害を軽減するために改良されたPINNを提案する。
論文 参考訳(メタデータ) (2024-07-28T07:58:10Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - Physics guided neural networks for modelling of non-linear dynamics [0.0]
この研究は、ディープニューラルネットワークの中間層に部分的に既知の情報を注入することで、モデルの精度を向上し、モデルの不確実性を低減し、トレーニング中に収束性を向上させることを実証する。
これらの物理誘導ニューラルネットワークの価値は、非線形系理論においてよく知られた5つの方程式で表される様々な非線形力学系の力学を学習することによって証明されている。
論文 参考訳(メタデータ) (2022-05-13T19:06:36Z) - Physics-informed Neural Networks-based Model Predictive Control for
Multi-link Manipulators [0.0]
物理インフォームド機械学習手法を用いて,多体ダイナミクスに対する非線形モデル予測制御(NMPC)について論じる。
本稿では,ネットワーク入力として制御動作と初期条件を付加することでPINNの強化を提案する。
PINNベースのMPCを用いて,複雑な機械システムにおける追跡問題の解法を提案する。
論文 参考訳(メタデータ) (2021-09-22T15:31:24Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
大規模ディープニューラルネットワーク(DNN)のトレーニングは、現在かなりの量のエネルギーを必要としており、深刻な環境影響をもたらす。
エネルギーコストを削減するための有望なアプローチの1つは、DNNを低精度で表現することである。
対数数システム(LNS)と乗算重み更新訓練法(LNS-Madam)を併用した低精度トレーニングフレームワークを共同で設計する。
論文 参考訳(メタデータ) (2021-06-26T00:32:17Z) - Physics-Informed Neural Nets-based Control [5.252190504926357]
この研究は、Physical-Informed Neural Nets-based Control (PINC)と呼ばれる新しいフレームワークを提示する。
PINCは問題を制御でき、事前に固定されていない長距離時間地平線をシミュレートすることができる。
本手法を2つの非線形動的システムの制御において紹介する。
論文 参考訳(メタデータ) (2021-04-06T14:55:23Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。