MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
- URL: http://arxiv.org/abs/2408.15101v1
- Date: Tue, 27 Aug 2024 14:36:46 GMT
- Title: MTMamba++: Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders
- Authors: Baijiong Lin, Weisen Jiang, Pengguang Chen, Shu Liu, Ying-Cong Chen,
- Abstract summary: We propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder.
It contains two types of core blocks: self-task Mamba block and cross-task Mamba block.
Experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based and Transformer-based methods.
- Score: 26.236118242986805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction from feature and semantic perspectives, respectively. Experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets demonstrate the superior performance of MTMamba++ over CNN-based and Transformer-based methods. The code is available at https://github.com/EnVision-Research/MTMamba.
Related papers
- TransMamba: Fast Universal Architecture Adaption from Transformers to Mamba [88.31117598044725]
We explore cross-architecture training to transfer the ready knowledge in existing Transformer models to alternative architecture Mamba, termed TransMamba.
Our approach employs a two-stage strategy to expedite training new Mamba models, ensuring effectiveness in across uni-modal and cross-modal tasks.
For cross-modal learning, we propose a cross-Mamba module that integrates language awareness into Mamba's visual features, enhancing the cross-modal interaction capabilities of Mamba architecture.
arXiv Detail & Related papers (2025-02-21T01:22:01Z) - MS-Temba : Multi-Scale Temporal Mamba for Efficient Temporal Action Detection [11.534493974662304]
Temporal Action Detection (TAD) in untrimmed videos requires models that can efficiently process long-duration videos.
We propose Multi-Scale Temporal Mamba (MS-Temba), the first Mamba-based architecture specifically designed for densely labeled TAD tasks.
MS-Temba achieves state-of-the-art performance on long-duration videos, remains competitive on shorter segments, and reduces model complexity by 88%.
arXiv Detail & Related papers (2025-01-10T17:52:47Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mamba, as a novel state-space model (SSM), has gained widespread application in natural language processing and computer vision.
In this work, we introduce Mamba-SEUNet, an innovative architecture that integrates Mamba with U-Net for SE tasks.
arXiv Detail & Related papers (2024-12-21T13:43:51Z) - MambaPro: Multi-Modal Object Re-Identification with Mamba Aggregation and Synergistic Prompt [60.10555128510744]
Multi-modal object Re-IDentification (ReID) aims to retrieve specific objects by utilizing complementary image information from different modalities.
Recently, large-scale pre-trained models like CLIP have demonstrated impressive performance in traditional single-modal object ReID tasks.
We introduce a novel framework called MambaPro for multi-modal object ReID.
arXiv Detail & Related papers (2024-12-14T06:33:53Z) - Taipan: Efficient and Expressive State Space Language Models with Selective Attention [100.16383527459429]
Long-context language modeling is a significant challenge in Natural Language Processing (NLP)
Recent State Space Models (SSMs) such as Mamba offer alternatives with constant memory usage, but they underperform in tasks requiring extensive in-context retrieval.
We introduce Taipan, a novel hybrid architecture that combines Mamba-2 with Selective Attention Layers (SALs)
Our experiments demonstrate Taipan's superior performance across various scales and tasks, offering a promising solution for efficient long-context language modeling.
arXiv Detail & Related papers (2024-10-24T09:25:37Z) - V2M: Visual 2-Dimensional Mamba for Image Representation Learning [68.51380287151927]
Mamba has garnered widespread attention due to its flexible design and efficient hardware performance to process 1D sequences.
Recent studies have attempted to apply Mamba to the visual domain by flattening 2D images into patches and then regarding them as a 1D sequence.
We propose a Visual 2-Dimensional Mamba model as a complete solution, which directly processes image tokens in the 2D space.
arXiv Detail & Related papers (2024-10-14T11:11:06Z) - EMMA: Empowering Multi-modal Mamba with Structural and Hierarchical Alignment [39.870809905905325]
We propose Empowering Multi-modal Mamba with Structural and Hierarchical Alignment (EMMA) to extract fine-grained visual information.
Our model shows lower latency than other Mamba-based MLLMs and is nearly four times faster than transformer-based MLLMs of similar scale during inference.
arXiv Detail & Related papers (2024-10-08T11:41:55Z) - MambaMIM: Pre-training Mamba with State Space Token-interpolation [14.343466340528687]
We introduce a generative self-supervised learning method for Mamba (MambaMIM) based on Selective Structure State Space Sequence Token-interpolation (S6T)
MambaMIM can be used on any single or hybrid Mamba architectures to enhance the Mamba long-range representation capability.
arXiv Detail & Related papers (2024-08-15T10:35:26Z) - MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders [27.487314321249627]
We propose MTMamba, a novel Mamba-based architecture for multi-task scene understanding.
Experiments on NYUDv2 and PASCAL-Context datasets demonstrate the superior performance of MTMamba over Transformer-based and CNN-based methods.
arXiv Detail & Related papers (2024-07-02T12:52:18Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection [5.37935922811333]
MambaMixer is a new architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels.
As a proof of concept, we design Vision MambaMixer (ViM2) and Time Series MambaMixer (TSM2) architectures based on the MambaMixer block.
arXiv Detail & Related papers (2024-03-29T00:05:13Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamber is a novel RIS architecture that integrates the power of Mamba with a multi-modal Mamba Twister block.
The Mamba Twister explicitly models image-text interaction, and fuses textual and visual features through its unique channel and spatial twisting mechanism.
arXiv Detail & Related papers (2024-03-26T16:27:37Z) - Multi-modal Semantic Understanding with Contrastive Cross-modal Feature
Alignment [11.897888221717245]
This paper proposes a novel CLIP-guided contrastive-learning-based architecture to perform multi-modal feature alignment.
Our model is simple to implement without using task-specific external knowledge, and thus can easily migrate to other multi-modal tasks.
arXiv Detail & Related papers (2024-03-11T01:07:36Z) - Cross-Modal Multi-Tasking for Speech-to-Text Translation via Hard
Parameter Sharing [72.56219471145232]
We propose a ST/MT multi-tasking framework with hard parameter sharing.
Our method reduces the speech-text modality gap via a pre-processing stage.
We show that our framework improves attentional encoder-decoder, Connectionist Temporal Classification (CTC), transducer, and joint CTC/attention models by an average of +0.5 BLEU.
arXiv Detail & Related papers (2023-09-27T17:48:14Z) - MulT: An End-to-End Multitask Learning Transformer [66.52419626048115]
We propose an end-to-end Multitask Learning Transformer framework, named MulT, to simultaneously learn multiple high-level vision tasks.
Our framework encodes the input image into a shared representation and makes predictions for each vision task using task-specific transformer-based decoder heads.
arXiv Detail & Related papers (2022-05-17T13:03:18Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
We show that tasks with high affinity at a certain scale are not guaranteed to retain this behaviour at other scales.
We propose a novel architecture, namely MTI-Net, that builds upon this finding.
arXiv Detail & Related papers (2020-01-19T21:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.