論文の概要: Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides
- arxiv url: http://arxiv.org/abs/2408.15126v5
- Date: Thu, 26 Sep 2024 16:38:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 04:52:58.137810
- Title: Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides
- Title(参考訳): ペプチドのフル原子時間相関ダイナミクスのためのフォースガイドブリッジマッチング
- Authors: Ziyang Yu, Wenbing Huang, Yang Liu,
- Abstract要約: 我々は、FBM(Force-Guided Bridge Matching)と呼ばれる条件付き生成モデルを提案する。
FBMはフル原子時間粗大化力学を学習し、ボルツマン制約分布を目標とする。
ペプチドからなる2つのデータセットの実験は、包括的メトリクスの観点から、我々の優位性を検証する。
- 参考スコア(独自算出の注目度): 17.559471937824767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular Dynamics (MD) is crucial in various fields such as materials science, chemistry, and pharmacology to name a few. Conventional MD software struggles with the balance between time cost and prediction accuracy, which restricts its wider application. Recently, data-driven approaches based on deep generative models have been devised for time-coarsened dynamics, which aim at learning dynamics of diverse molecular systems over a long timestep, enjoying both universality and efficiency. Nevertheless, most current methods are designed solely to learn from the data distribution regardless of the underlying Boltzmann distribution, and the physics priors such as energies and forces are constantly overlooked. In this work, we propose a conditional generative model called Force-guided Bridge Matching (FBM), which learns full-atom time-coarsened dynamics and targets the Boltzmann-constrained distribution. With the guidance of our delicately-designed intermediate force field, FBM leverages favourable physics priors into the generation process, giving rise to enhanced simulations. Experiments on two datasets consisting of peptides verify our superiority in terms of comprehensive metrics and demonstrate transferability to unseen systems.
- Abstract(参考訳): 分子動力学(MD)は材料科学、化学、薬理学など様々な分野において重要である。
従来のMDソフトウェアは、時間コストと予測精度のバランスに苦しむ。
近年,多種多様な分子系の力学を長期にわたって学習し,普遍性と効率性の両方を享受することを目的として,深層生成モデルに基づくデータ駆動型アプローチが考案されている。
しかしながら、現在のほとんどの手法は、基礎となるボルツマン分布によらず、データ分布からのみ学習するように設計されており、エネルギーや力といった物理学の先駆者は常に見過ごされている。
本研究では,フル原子時間粗大化力学を学習し,ボルツマン制約分布を対象とするFBM(Force-Guided Bridge Matching)と呼ばれる条件生成モデルを提案する。
微妙に設計された中間力場の誘導により、FBMは好ましい物理の先行を生成プロセスに活用し、シミュレーションを改良する。
ペプチドからなる2つのデータセットの実験は、包括的メトリクスの観点から、我々の優位性を検証し、目に見えないシステムへの転送可能性を示す。
関連論文リスト
- Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Score dynamics: scaling molecular dynamics with picoseconds timestep via
conditional diffusion model [5.39025059364831]
分子動力学シミュレーションから大きな時間ステップを持つ加速進化演算子を学習するためのフレームワークであるスコアダイナミクス(SD)を提案する。
我々は10psの時間ステップで進化した現実的な分子系のグラフニューラルネットワークに基づくスコアダイナミクスモデルを構築した。
現在のSD実装は,本研究で研究したシステムに対して,MDよりも約2桁高速である。
論文 参考訳(メタデータ) (2023-10-02T22:29:45Z) - Timewarp: Transferable Acceleration of Molecular Dynamics by Learning
Time-Coarsened Dynamics [24.13304926093212]
我々は,マルコフ連鎖モンテカルロ法において,正規化フローを提案分布として用いる改良されたサンプリング手法であるTimewarpを提案する。
フローはMDトラジェクトリ上でオフラインでトレーニングされ,105~106:textrmfs$の分子動力学をシミュレートして,大きなステップの時間化を学ぶ。
論文 参考訳(メタデータ) (2023-02-02T15:48:39Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks [4.444748822792469]
学習に基づく力場はアブ・イニシアトMDシミュレーションの高速化に大きな進歩を遂げているが、現実の多くのアプリケーションでは不十分である。
非常に大きな時間ステップで、粗粒MDを直接シミュレートするマルチスケールグラフニューラルネットワークを学習することで、これらの課題に対処することを目指している。
論文 参考訳(メタデータ) (2022-04-21T18:07:08Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
本研究では,6つのIMUセンサからリアルタイムに全体動作を再構築する,注意に基づく深層学習手法を提案する。
提案手法は, 実装が簡単で, 小型でありながら, 定量的かつ質的に新しい結果が得られる。
論文 参考訳(メタデータ) (2022-03-29T16:24:52Z) - Fast and Sample-Efficient Interatomic Neural Network Potentials for
Molecules and Materials Based on Gaussian Moments [3.1829446824051195]
従来のGM-NNモデルに基づいて改良されたNNアーキテクチャを提案する。
改善された方法論は、アクティブラーニングやラーニング・オン・ザ・フライ(Learning-on-the-fly)といったトレーニング・ヘビーの前提条件である。
論文 参考訳(メタデータ) (2021-09-20T14:23:34Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
実効, 低次元, 粗粒度ダイナミクスモデル学習のための生成的枠組みを提案する。
粒子力学のマルチスケール物理系におけるその有効性と精度を実証する。
論文 参考訳(メタデータ) (2021-01-14T19:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。