論文の概要: LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
- arxiv url: http://arxiv.org/abs/2408.15221v1
- Date: Tue, 27 Aug 2024 17:33:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 12:53:10.604595
- Title: LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
- Title(参考訳): LLMの防衛は、人間のジェイルブレイクにはまだ耐えられない
- Authors: Nathaniel Li, Ziwen Han, Ian Steneker, Willow Primack, Riley Goodside, Hugh Zhang, Zifan Wang, Cristina Menghini, Summer Yue,
- Abstract要約: マルチターンヒトジェイルブレイクによって重大な脆弱性が発見され,HarmBenchの攻撃成功率(ASR)は70%を超えた。
我々はこれらの結果を537個のマルチターンジェイルブレイクにまたがる2,912個のプロンプトのデータセットであるMHJ(Multi-Turn Human Jailbreaks)にコンパイルする。
- 参考スコア(独自算出の注目度): 11.83818222565186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent large language model (LLM) defenses have greatly improved models' ability to refuse harmful queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities, exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens of commercial red teaming engagements, supporting research towards stronger LLM defenses.
- Abstract(参考訳): 最近の大規模言語モデル(LLM)の防御は、敵が攻撃しても有害なクエリを拒否するモデルの能力を大幅に改善した。
しかし、LLMの防御は、現実世界の悪意のある使用に対して不十分な脅威モデルである1ターンの会話において、自動的な敵攻撃に対して主に評価される。
マルチターンヒトジェイルブレイクが重大な脆弱性を発見でき、HarmBenchの攻撃成功率(ASR)を70%以上越え、単一桁のASRと自動単ターン攻撃を報告している。
人間のジェイルブレイクはまた、未学習の防御の脆弱性を明らかにし、未学習のモデルから二重用途のバイオセキュリティ知識を回復することに成功した。
我々はこれらの結果を537個のマルチターンジェイルブレイクにまたがる2,912個のプロンプトのデータセットであるMHJ(Multi-Turn Human Jailbreaks)にコンパイルする。
我々はMHJを、数十の商業的レッドチームで開発されたジェイルブレイク戦術のコンペレーションと共に公開し、LLM防衛の強化に向けた研究を支援します。
関連論文リスト
- SQL Injection Jailbreak: a structural disaster of large language models [71.55108680517422]
LLMによる入力プロンプトの構築を利用して、ユーザプロンプトにジェイルブレイク情報を注入する新しいジェイルブレイク手法を提案する。
提案手法は,AdvBench の文脈でよく知られた5つのオープンソース LLM に対する攻撃成功率を約100% 達成する。
論文 参考訳(メタデータ) (2024-11-03T13:36:34Z) - Jigsaw Puzzles: Splitting Harmful Questions to Jailbreak Large Language Models [50.89022445197919]
大規模言語モデル(LLM)は、人間との関わりにおいて卓越した性能を示した。
LLMは脱獄攻撃に弱いため、有害な反応が生じる。
我々は,高度LLMに対する単純かつ効果的なマルチターンジェイルブレイク戦略であるJigsaw Puzzles (JSP)を提案する。
論文 参考訳(メタデータ) (2024-10-15T10:07:15Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
隠れ状態フィルタ(HSF)に基づくジェイルブレイク攻撃防御戦略を提案する。
HSFは、推論プロセスが始まる前に、モデルが相手の入力をプリエンプティブに識別し、拒否することを可能にする。
不正なユーザクエリに対する応答を最小限に抑えながら、Jailbreak攻撃の成功率を大幅に低下させる。
論文 参考訳(メタデータ) (2024-08-31T06:50:07Z) - Figure it Out: Analyzing-based Jailbreak Attack on Large Language Models [21.252514293436437]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃に対する分析ベースジェイルブレイク(ABJ)を提案する。
ABJはGPT-4-turbo-0409上で94.8%の攻撃成功率(ASR)と1.06の攻撃効率(AE)を達成する。
論文 参考訳(メタデータ) (2024-07-23T06:14:41Z) - SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner [21.414701448926614]
本稿では,自衛隊(SelfDefend)と呼ばれる総称LDMジェイルブレイク防御フレームワークを紹介する。
我々は、一般的なGPT-3.5/4モデルを用いて、主要なジェイルブレイク攻撃すべてに対して実証的に検証した。
これらのモデルは6つの最先端の防御性能を上回り、GPT-4ベースのSelfDefendの性能に匹敵する。
論文 参考訳(メタデータ) (2024-06-08T15:45:31Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
4つのカテゴリから13の最先端ジェイルブレイク法,16の違反カテゴリから160の質問,6つの人気のあるLDMについて検討した。
実験の結果, 最適化されたジェイルブレイクは高い攻撃成功率を確実に達成することが示された。
攻撃性能と効率のトレードオフについて論じるとともに、脱獄プロンプトの転送性は依然として維持可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:42:50Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。