論文の概要: Quantum-inspired Complex Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2111.00392v1
- Date: Sun, 31 Oct 2021 03:10:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 19:06:12.558815
- Title: Quantum-inspired Complex Convolutional Neural Networks
- Title(参考訳): 量子インスパイアされた複雑畳み込みニューラルネットワーク
- Authors: Shangshang Shi, Zhimin Wang, Guolong Cui, Shengbin Wang, Ruimin Shang,
Wendong Li, Zhiqiang Wei, Yongjian Gu
- Abstract要約: 我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
- 参考スコア(独自算出の注目度): 17.65730040410185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum-inspired neural network is one of the interesting researches at the
junction of the two fields of quantum computing and deep learning. Several
models of quantum-inspired neurons with real parameters have been proposed,
which are mainly used for three-layer feedforward neural networks. In this
work, we improve the quantum-inspired neurons by exploiting the complex-valued
weights which have richer representational capacity and better non-linearity.
We then extend the method of implementing the quantum-inspired neurons to the
convolutional operations, and naturally draw the models of quantum-inspired
convolutional neural networks (QICNNs) capable of processing high-dimensional
data. Five specific structures of QICNNs are discussed which are different in
the way of implementing the convolutional and fully connected layers. The
performance of classification accuracy of the five QICNNs are tested on the
MNIST and CIFAR-10 datasets. The results show that the QICNNs can perform
better in classification accuracy on MNIST dataset than the classical CNN. More
learning tasks that our QICNN can outperform the classical counterparts will be
found.
- Abstract(参考訳): 量子インスパイアされたニューラルネットワークは、量子コンピューティングとディープラーニングの2つの分野の結合における興味深い研究の1つである。
実際のパラメータを持つ量子インスパイアされたニューロンのモデルが提案されており、主に3層フィードフォワードニューラルネットワークに使われている。
本研究では、よりリッチな表現能力と非線形性を有する複素値重みを活用し、量子インスパイアされたニューロンを改善する。
次に、量子インスパイアされたニューロンを畳み込み演算に実装する方法を拡張し、高次元データを処理する量子インスパイア畳み込みニューラルネットワーク(qicnns)のモデルを自然に描画する。
畳み込み層と完全連結層の実装方法が異なる5つのqicnnの構造について考察した。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
その結果,従来のCNNよりも,MNISTデータセットの分類精度がよいことがわかった。
qicnnが従来のものよりも優れた学習タスクを見つけることができます。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
量子拡張畳み込みニューラルネットワーク(QDCNN)と呼ばれる新しいハイブリッド量子古典型アルゴリズムを提案する。
提案手法は,現代のディープラーニングアルゴリズムに広く応用されている拡張畳み込みの概念を,ハイブリッドニューラルネットワークの文脈にまで拡張する。
提案したQDCNNは,量子畳み込み過程において,計算コストを低減しつつ,より大きなコンテキストを捉えることができる。
論文 参考訳(メタデータ) (2021-10-29T10:24:34Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T06:47:34Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。