論文の概要: Dissipation-driven quantum generative adversarial networks
- arxiv url: http://arxiv.org/abs/2408.15597v1
- Date: Wed, 28 Aug 2024 07:41:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:53:03.853068
- Title: Dissipation-driven quantum generative adversarial networks
- Title(参考訳): 散逸駆動型量子生成対向ネットワーク
- Authors: He Wang, Jin Wang,
- Abstract要約: 本稿では,従来のデータ生成に適した,分散駆動型量子生成逆数ネットワーク(DQGAN)アーキテクチャを提案する。
古典データは、強い調整された散逸過程を通じて入力層の入力量子ビットに符号化される。
出力量子ビットの定常状態の可観測値を測定することにより、生成されたデータと分類結果の両方を抽出する。
- 参考スコア(独自算出の注目度): 11.833077116494929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning holds the promise of harnessing quantum advantage to achieve speedup beyond classical algorithms. Concurrently, research indicates that dissipation can serve as an effective resource in quantum computation. In this paper, we introduce a novel dissipation-driven quantum generative adversarial network (DQGAN) architecture specifically tailored for generating classical data. Our DQGAN comprises two interacting networks: a generative network and a discriminative network, both constructed from qubits. The classical data is encoded into the input qubits of the input layer via strong tailored dissipation processes. This encoding scheme enables us to extract both the generated data and the classification results by measuring the observables of the steady state of the output qubits. The network coupling weight, i.e., the strength of the interaction Hamiltonian between layers, is iteratively updated during the training process. This training procedure closely resembles the training of conventional generative adversarial networks (GANs). By alternately updating the two networks, we foster adversarial learning until the equilibrium point is reached. Our preliminary numerical test on a simplified instance of the task substantiate the feasibility of our DQGAN model.
- Abstract(参考訳): 量子機械学習は、古典的なアルゴリズムを超えるスピードアップを達成するために量子アドバンテージを活用するという約束を持っている。
同時に、研究は散逸が量子計算の有効な資源として役立つことを示唆している。
本稿では,従来のデータ生成に適した分散型量子生成逆数ネットワーク(DQGAN)アーキテクチャを提案する。
我々のDQGANは、生成ネットワークと識別ネットワークの2つの相互作用ネットワークで構成されている。
古典データは、強い調整された散逸過程を通じて入力層の入力量子ビットに符号化される。
この符号化方式により、出力量子ビットの定常状態の観測可能性を測定することにより、生成されたデータと分類結果の両方を抽出できる。
ネットワーク結合重み、すなわち層間相互作用ハミルトニアンの強度は、トレーニングプロセス中に反復的に更新される。
この訓練は, 従来のGAN(Generative Adversarial Network)のトレーニングとよく似ている。
2つのネットワークを交互に更新することで、平衡点に達するまで敵対的学習を育む。
我々のDQGANモデルの有効性を裏付けるタスクの簡易なインスタンスに関する予備的な数値実験を行った。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Quantum Federated Learning for Distributed Quantum Networks [9.766446130011706]
本稿では,量子力学の興味深い特徴を利用した分散量子ネットワークのための量子フェデレーション学習を提案する。
分散量子ネットワーク内のクライアントがローカルモデルをトレーニングするのを助けるために、量子勾配降下アルゴリズムが提供される。
量子セキュアなマルチパーティ計算プロトコルを設計し,中国の残差定理を用いた。
論文 参考訳(メタデータ) (2022-12-25T14:37:23Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum neural networks [0.0]
この論文は、過去数十年で最もエキサイティングな研究分野である量子コンピューティングと機械学習を組み合わせたものだ。
本稿では、汎用量子計算が可能で、トレーニング中にメモリ要求の少ない散逸型量子ニューラルネットワーク(DQNN)を紹介する。
論文 参考訳(メタデータ) (2022-05-17T07:47:00Z) - Dissipative quantum generative adversarial networks [0.0]
2つの散逸型量子ニューラルネットワーク(DQNN)を用いた生成逆モデルを構築する。
両部を競争的に訓練することで,よく訓練されたDQNNが得られることがわかった。
論文 参考訳(メタデータ) (2021-12-11T22:59:40Z) - Branching Quantum Convolutional Neural Networks [0.0]
小型量子コンピュータは、大規模量子および非常に大規模な古典的データセット上での学習タスクにおいて、既に潜在的な増加を見せている。
本稿では、分岐量子畳み込みニューラルネットワークであるQCNN(bQCNN)を、かなり高い表現性で一般化する。
論文 参考訳(メタデータ) (2020-12-28T19:00:03Z) - Quantum State Tomography with Conditional Generative Adversarial
Networks [0.7646713951724009]
量子状態トモグラフィー(QST)に条件付き生成逆数ネットワーク(CGAN)を適用する。
CGANフレームワークでは、2つのデュエルニューラルネットワーク、ジェネレータと識別器がデータからマルチモーダルモデルを学ぶ。
我々のQST-CGANは、標準最大化法よりもはるかに高速で、しかも少ないデータで光量子状態を再構成することを示した。
論文 参考訳(メタデータ) (2020-08-07T15:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。