論文の概要: Quantum State Tomography with Conditional Generative Adversarial
Networks
- arxiv url: http://arxiv.org/abs/2008.03240v2
- Date: Fri, 4 Dec 2020 18:14:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 01:56:31.726001
- Title: Quantum State Tomography with Conditional Generative Adversarial
Networks
- Title(参考訳): 条件付き生成逆ネットワークを用いた量子状態トモグラフィ
- Authors: Shahnawaz Ahmed, Carlos S\'anchez Mu\~noz, Franco Nori, Anton Frisk
Kockum
- Abstract要約: 量子状態トモグラフィー(QST)に条件付き生成逆数ネットワーク(CGAN)を適用する。
CGANフレームワークでは、2つのデュエルニューラルネットワーク、ジェネレータと識別器がデータからマルチモーダルモデルを学ぶ。
我々のQST-CGANは、標準最大化法よりもはるかに高速で、しかも少ないデータで光量子状態を再構成することを示した。
- 参考スコア(独自算出の注目度): 0.7646713951724009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state tomography (QST) is a challenging task in intermediate-scale
quantum devices. Here, we apply conditional generative adversarial networks
(CGANs) to QST. In the CGAN framework, two duelling neural networks, a
generator and a discriminator, learn multi-modal models from data. We augment a
CGAN with custom neural-network layers that enable conversion of output from
any standard neural network into a physical density matrix. To reconstruct the
density matrix, the generator and discriminator networks train each other on
data using standard gradient-based methods. We demonstrate that our QST-CGAN
reconstructs optical quantum states with high fidelity orders of magnitude
faster, and from less data, than a standard maximum-likelihood method. We also
show that the QST-CGAN can reconstruct a quantum state in a single evaluation
of the generator network if it has been pre-trained on similar quantum states.
- Abstract(参考訳): 量子状態トモグラフィ(QST)は、中間スケールの量子デバイスにおいて難しい課題である。
本稿では,QSTに条件付き生成逆ネットワーク(CGAN)を適用する。
CGANフレームワークでは、2つのデュエルニューラルネットワーク、ジェネレータと識別器がデータからマルチモーダルモデルを学ぶ。
我々は、任意の標準ニューラルネットワークから物理密度行列への出力変換を可能にするカスタムニューラルネットワーク層でcganを補強する。
密度行列を再構築するために、ジェネレータと判別器ネットワークは標準勾配法を用いて互いにデータを訓練する。
我々のQST-CGANは、標準最大化法よりもはるかに高速かつ少ないデータで、光量子状態を再構成することを示した。
また、QST-CGANは、類似した量子状態で事前学習された場合、発電機ネットワークの単一評価において量子状態を再構築可能であることを示す。
関連論文リスト
- Dissipation-driven quantum generative adversarial networks [11.833077116494929]
本稿では,従来のデータ生成に適した,分散駆動型量子生成逆数ネットワーク(DQGAN)アーキテクチャを提案する。
古典データは、強い調整された散逸過程を通じて入力層の入力量子ビットに符号化される。
出力量子ビットの定常状態の可観測値を測定することにより、生成されたデータと分類結果の両方を抽出する。
論文 参考訳(メタデータ) (2024-08-28T07:41:58Z) - CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
我々は、QUantum Network Communication (SeQUeNCe) のオープンソースシミュレータを用いて、2つの原子周波数コム(AFC)吸収量子メモリ間の絡み合いの発生をシミュレートする。
本研究は,SeQUeNCe における truncated Fock 空間内の光量子状態の表現を実現する。
本研究では,SPDC音源の平均光子数と,平均光子数とメモリモード数の両方で異なる絡み合い発生率を観測する。
論文 参考訳(メタデータ) (2022-12-17T05:51:17Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Classification and reconstruction of optical quantum states with deep
neural networks [1.1470070927586016]
我々は、量子状態の分類と再構成にディープ・ニューラル・ネットワーク技術を適用した。
ノイズの有無やデータが少ない場合でも,高い分類精度と再現率を示す。
我々は,条件付き生成対向ネットワーク(QST-CGAN)を用いた[arXiv:2008.03240]QST手法のさらなる実演を行う。
論文 参考訳(メタデータ) (2020-12-03T18:58:16Z) - Hybrid quantum-classical classifier based on tensor network and
variational quantum circuit [0.0]
本稿では、量子インスパイアされたテンソルネットワーク(TN)と変分量子回路(VQC)を組み合わせて教師付き学習タスクを行うハイブリッドモデルを提案する。
低結合次元の行列積状態に基づくTNは、MNISTデータセットのバイナリ分類において、VQCの入力のためのデータを圧縮する特徴抽出器としてPCAよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-30T09:43:59Z) - Qutrit-inspired Fully Self-supervised Shallow Quantum Learning Network
for Brain Tumor Segmentation [7.173859338960338]
量子ビットまたはバイレベル量子ビットは、しばしば量子ニューラルネットワークモデルを記述する。
本稿では,脳MR画像の自動分割のための,自己教師付き浅層学習ネットワークモデルを提案する。
その結果,ヒトの介入や計算資源を最小限に抑えることで,腫瘍検出に有望なセグメンテーション結果が得られた。
論文 参考訳(メタデータ) (2020-09-14T22:15:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。