A Neural Material Point Method for Particle-based Simulations
- URL: http://arxiv.org/abs/2408.15753v2
- Date: Sun, 13 Oct 2024 08:44:12 GMT
- Title: A Neural Material Point Method for Particle-based Simulations
- Authors: Omer Rochman Sharabi, Sacha Lewin, Gilles Louppe,
- Abstract summary: We present NeuralMPM, a neural emulation framework for particle-based simulations.
NeuralMPM interpolates Lagrangian particles onto a fixed-size grid, computes updates on grid nodes using image-to-image neural networks, and interpolates back to the particles.
We demonstrate the advantages of NeuralMPM on several datasets, including fluid dynamics and fluid-solid interactions.
- Score: 5.4346288442609945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mesh-free Lagrangian methods are widely used for simulating fluids, solids, and their complex interactions due to their ability to handle large deformations and topological changes. These physics simulators, however, require substantial computational resources for accurate simulations. To address these issues, deep learning emulators promise faster and scalable simulations, yet they often remain expensive and difficult to train, limiting their practical use. Inspired by the Material Point Method (MPM), we present NeuralMPM, a neural emulation framework for particle-based simulations. NeuralMPM interpolates Lagrangian particles onto a fixed-size grid, computes updates on grid nodes using image-to-image neural networks, and interpolates back to the particles. Similarly to MPM, NeuralMPM benefits from the regular voxelized representation to simplify the computation of the state dynamics, while avoiding the drawbacks of mesh-based Eulerian methods. We demonstrate the advantages of NeuralMPM on several datasets, including fluid dynamics and fluid-solid interactions. Compared to existing methods, NeuralMPM reduces training times from days to hours, while achieving comparable or superior long-term accuracy, making it a promising approach for practical forward and inverse problems. A project page is available at https://neuralmpm.isach.be
Related papers
- NeuralMAG: Fast and Generalizable Micromagnetic Simulation with Deep Neural Nets [9.674100498903844]
We introduce NeuralMAG, a deep learning approach to micromagnetic simulation.
Our approach follows the LLG iterative framework but accelerates demagnetizing field computation through the employment of a U-shaped neural network (Unet)
Unlike existing neural methods, NeuralMAG concentrates on the core computation rather than an end-to-end approximation for a specific task, making it inherently generalizable.
arXiv Detail & Related papers (2024-10-19T05:25:08Z) - Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers
for non-stationary and nonlinear simulations on arbitrary meshes [13.41003911618347]
This work introduces PI-MGNs, a hybrid approach that combines PINNs and MGNs to solve non-stationary and nonlinear partial differential equations (PDEs) on arbitrary meshes.
Results show that the model scales well to large and complex meshes, although it is trained on small generic meshes only.
arXiv Detail & Related papers (2024-02-16T13:34:51Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
We develop a new method that blends numerical solvers with neural operators to accelerate such simulations.
We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition.
arXiv Detail & Related papers (2023-12-08T23:44:54Z) - Three-dimensional granular flow simulation using graph neural
network-based learned simulator [2.153852088624324]
We use a graph neural network (GNN) to develop a simulator for granular flows.
The simulator reproduces the overall behaviors of column collapses with various aspect ratios.
The speed of GNS outperforms high-fidelity numerical simulators by 300 times.
arXiv Detail & Related papers (2023-11-13T15:54:09Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
We propose NeuralClothSim, a new quasistatic cloth simulator using thin shells.
Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields.
arXiv Detail & Related papers (2023-08-24T17:59:54Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Graph Neural Network-based surrogate model for granular flows [2.153852088624324]
Granular flow dynamics is crucial for assessing various geotechnical risks, including landslides and debris flows.
Traditional continuum and discrete numerical methods are limited by their computational cost in simulating large-scale systems.
We develop a graph neural network-based simulator (GNS) that takes the current state of granular flow and predicts the next state using explicit integration by learning the local interaction laws.
arXiv Detail & Related papers (2023-05-09T07:28:12Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Transformer with Implicit Edges (TIE) captures the rich semantics of particle interactions in an edge-free manner.
We evaluate our model on diverse domains of varying complexity and materials.
arXiv Detail & Related papers (2022-07-22T03:45:29Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.