NeuralMAG: Fast and Generalizable Micromagnetic Simulation with Deep Neural Nets
- URL: http://arxiv.org/abs/2410.14986v1
- Date: Sat, 19 Oct 2024 05:25:08 GMT
- Title: NeuralMAG: Fast and Generalizable Micromagnetic Simulation with Deep Neural Nets
- Authors: Yunqi Cai, Jiangnan Li, Dong Wang,
- Abstract summary: We introduce NeuralMAG, a deep learning approach to micromagnetic simulation.
Our approach follows the LLG iterative framework but accelerates demagnetizing field computation through the employment of a U-shaped neural network (Unet)
Unlike existing neural methods, NeuralMAG concentrates on the core computation rather than an end-to-end approximation for a specific task, making it inherently generalizable.
- Score: 9.674100498903844
- License:
- Abstract: Micromagnetics has made significant strides, particularly due to its wide-ranging applications in magnetic storage design. Numerical simulation is a cornerstone of micromagnetics research, relying on first-principle rules to compute the dynamic evolution of micromagnetic systems based on the renowned LLG equation, named after Landau, Lifshitz, and Gilbert. However, simulations are often hindered by their slow speed. Although Fast-Fourier transformation (FFT) calculations reduce the computational complexity to O(NlogN), it remains impractical for large-scale simulations. In this paper, we introduce NeuralMAG, a deep learning approach to micromagnetic simulation. Our approach follows the LLG iterative framework but accelerates demagnetizing field computation through the employment of a U-shaped neural network (Unet). The Unet architecture comprises an encoder that extracts aggregated spins at various scales and learns the local interaction at each scale, followed by a decoder that accumulates the local interactions at different scales to approximate the global convolution. This divide-and-accumulate scheme achieves a time complexity of O(N), significantly enhancing the speed and feasibility of large-scale simulations. Unlike existing neural methods, NeuralMAG concentrates on the core computation rather than an end-to-end approximation for a specific task, making it inherently generalizable. To validate the new approach, we trained a single model and evaluated it on two micromagnetics tasks with various sample sizes, shapes, and material settings.
Related papers
- A Neural Material Point Method for Particle-based Simulations [5.4346288442609945]
We present NeuralMPM, a neural emulation framework for particle-based simulations.
NeuralMPM interpolates Lagrangian particles onto a fixed-size grid, computes updates on grid nodes using image-to-image neural networks, and interpolates back to the particles.
We demonstrate the advantages of NeuralMPM on several datasets, including fluid dynamics and fluid-solid interactions.
arXiv Detail & Related papers (2024-08-28T12:39:51Z) - Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
We propose an extension of Latent Dynamics Networks (LDNets) to create parameterized space-time surrogate models for multiscale and multiphysics sets of highly nonlinear differential equations on complex geometries.
LFLDNets employ a neurologically-inspired, sparse liquid neural network for temporal dynamics, relaxing the requirement of a numerical solver for time advancement and leading to superior performance in terms of parameters, accuracy, efficiency and learned trajectories.
arXiv Detail & Related papers (2024-08-19T09:14:25Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
We develop a new method that blends numerical solvers with neural operators to accelerate such simulations.
We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition.
arXiv Detail & Related papers (2023-12-08T23:44:54Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Hybrid Physical-Neural ODEs for Fast N-body Simulations [0.22419496088582863]
We present a new scheme to compensate for the small-scales approximations resulting from Particle-Mesh schemes for cosmological N-body simulations.
We find that our approach outperforms PGD for the cross-correlation coefficients, and is more robust to changes in simulation settings.
arXiv Detail & Related papers (2022-07-12T13:06:06Z) - REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics [0.0]
We introduce REMuS-GNN, a rotation-equivariant multi-scale model for simulating continuum dynamical systems.
We demonstrate and evaluate this method on the incompressible flow around elliptical cylinders.
arXiv Detail & Related papers (2022-05-05T16:20:37Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.