論文の概要: A Survey on Evaluation of Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2408.15769v1
- Date: Wed, 28 Aug 2024 13:05:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 16:00:49.868319
- Title: A Survey on Evaluation of Multimodal Large Language Models
- Title(参考訳): マルチモーダル大言語モデルの評価に関する調査
- Authors: Jiaxing Huang, Jingyi Zhang,
- Abstract要約: マルチモーダル大規模言語モデル(MLLM)は、強力な大規模言語モデル(LLM)を統合することで、人間の知覚と推論システムを模倣する
この枠組みはMLLMに人間のような能力を与え、人工知能(AGI)の実現への潜在的経路を示唆している。
GPT-4V や Gemini のような全周MLLM の出現に伴い,様々な次元にわたってその能力を評価するための評価手法が開発されている。
- 参考スコア(独自算出の注目度): 11.572066870077888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) mimic human perception and reasoning system by integrating powerful Large Language Models (LLMs) with various modality encoders (e.g., vision, audio), positioning LLMs as the "brain" and various modality encoders as sensory organs. This framework endows MLLMs with human-like capabilities, and suggests a potential pathway towards achieving artificial general intelligence (AGI). With the emergence of all-round MLLMs like GPT-4V and Gemini, a multitude of evaluation methods have been developed to assess their capabilities across different dimensions. This paper presents a systematic and comprehensive review of MLLM evaluation methods, covering the following key aspects: (1) the background of MLLMs and their evaluation; (2) "what to evaluate" that reviews and categorizes existing MLLM evaluation tasks based on the capabilities assessed, including general multimodal recognition, perception, reasoning and trustworthiness, and domain-specific applications such as socioeconomic, natural sciences and engineering, medical usage, AI agent, remote sensing, video and audio processing, 3D point cloud analysis, and others; (3) "where to evaluate" that summarizes MLLM evaluation benchmarks into general and specific benchmarks; (4) "how to evaluate" that reviews and illustrates MLLM evaluation steps and metrics; Our overarching goal is to provide valuable insights for researchers in the field of MLLM evaluation, thereby facilitating the development of more capable and reliable MLLMs. We emphasize that evaluation should be regarded as a critical discipline, essential for advancing the field of MLLMs.
- Abstract(参考訳): マルチモーダル大言語モデル(MLLM)は、強力な大言語モデル(LLM)を様々なモダリティエンコーダ(例えば、視覚、音声)と統合し、LLMを脳、様々なモダリティエンコーダを感覚器官として配置することで、人間の知覚と推論システムを模倣する。
このフレームワークはMLLMに人間のような能力を与え、人工知能(AGI)の実現に向けた潜在的な道筋を示唆している。
GPT-4V や Gemini のような全周MLLM の出現に伴い,様々な次元にわたってその能力を評価するための評価手法が開発されている。
本稿では,MLLMの評価手法について,(1)MLLMの背景とその評価について,(2)MLLMの評価課題を,一般のマルチモーダル認識,認識,推論,信頼性,および社会経済・自然科学・工学,AIエージェント,リモートセンシング,ビデオ・オーディオ処理,3Dポイントクラウド分析などの領域固有の応用,(3)MLLM評価ベンチマークを総合的および特異的なベンチマークに要約した「評価の場所」,(4)MLLM評価のステップとメトリクスをレビューし,説明する「評価の方法」,など,体系的かつ包括的に検討する。
我々は,MLLMの分野を前進させるためには,評価を重要な分野とみなすべきであることを強調する。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Surveying the MLLM Landscape: A Meta-Review of Current Surveys [17.372501468675303]
MLLM(Multimodal Large Language Models)は、人工知能分野における変革の原動力となっている。
本研究の目的は,MLLMのベンチマークテストと評価方法の体系的レビューを提供することである。
論文 参考訳(メタデータ) (2024-09-17T14:35:38Z) - A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
本稿では,Multimodal Large Language Models (MLLM) のベンチマークと評価について概説する。
本研究では,(1)知覚と理解,(2)認知と推論,(3)特定のドメイン,(4)キー能力,(5)他のモダリティに着目した。
我々のキーとなる主張は、MLLMの開発をより良いものにするための重要な規律として評価されるべきである、ということである。
論文 参考訳(メタデータ) (2024-08-16T09:52:02Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
本稿では,MLLM-as-a-Judgeと呼ばれる新しいベンチマークを導入し,多様なモダリティにまたがる審査員を支援するMLLMの能力を評価する。
本研究は, MLLMがPair Comparisonにおいて顕著な人間ライクな識別を示す一方で, Scoring EvaluationとBatch Rankingにおいて, 人間の嗜好とは大きく異なることを明らかにした。
論文 参考訳(メタデータ) (2024-02-07T12:28:32Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
MLLM(Multimodal large language model)は、AIアプリケーションの範囲を広げている。
既存のMLLMの自動評価手法は主にユーザエクスペリエンスを考慮せずにクエリを評価する場合に限られている。
本稿では,MLLM を判断基準として評価する MLLM の新しい評価パラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:04:25Z) - Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level
Vision [85.6008224440157]
MLLM(Multi-modality Large Language Models)は、コンピュータビジョンの特殊モデルから汎用基礎モデルへのシフトを触媒している。
Q-Benchは3つの領域(低レベル視覚知覚、低レベル視覚記述、全体視品質評価)でMLLMの潜在能力を評価するための総合的なベンチマークである。
論文 参考訳(メタデータ) (2023-09-25T14:43:43Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。