論文の概要: SPICED: Syntactical Bug and Trojan Pattern Identification in A/MS Circuits using LLM-Enhanced Detection
- arxiv url: http://arxiv.org/abs/2408.16018v1
- Date: Sun, 25 Aug 2024 17:07:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 18:04:21.221767
- Title: SPICED: Syntactical Bug and Trojan Pattern Identification in A/MS Circuits using LLM-Enhanced Detection
- Title(参考訳): SPICED:LLM検出を用いたA/MS回路の統語バグとトロイの木馬パターン同定
- Authors: Jayeeta Chaudhuri, Dhruv Thapar, Arjun Chaudhuri, Farshad Firouzi, Krishnendu Chakrabarty,
- Abstract要約: 多くのIC企業は製造をサードパーティのファウンデーションにアウトソースし、ステルスのアナログトロイの木馬のようなセキュリティリスクを生み出している。
回路の透かしを埋め込んだり、ハードウェアベースの監視を行うといった従来の検出方法は、しばしばかなりの面積と電力のオーバーヘッドを課す。
本研究では,ソフトウェア領域内で動作するフレームワークであるSPICEDを提案する。
- 参考スコア(独自算出の注目度): 3.048384587446267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analog and mixed-signal (A/MS) integrated circuits (ICs) are crucial in modern electronics, playing key roles in signal processing, amplification, sensing, and power management. Many IC companies outsource manufacturing to third-party foundries, creating security risks such as stealthy analog Trojans. Traditional detection methods, including embedding circuit watermarks or conducting hardware-based monitoring, often impose significant area and power overheads, and may not effectively identify all types of Trojans. To address these shortcomings, we propose SPICED, a Large Language Model (LLM)-based framework that operates within the software domain, eliminating the need for hardware modifications for Trojan detection and localization. This is the first work using LLM-aided techniques for detecting and localizing syntactical bugs and analog Trojans in circuit netlists, requiring no explicit training and incurring zero area overhead. Our framework employs chain-of-thought reasoning and few-shot examples to teach anomaly detection rules to LLMs. With the proposed method, we achieve an average Trojan coverage of 93.32% and an average true positive rate of 93.4% in identifying Trojan-impacted nodes for the evaluated analog benchmark circuits. These experimental results validate the effectiveness of LLMs in detecting and locating both syntactical bugs and Trojans within analog netlists.
- Abstract(参考訳): アナログと混合信号集積回路(A/MS)は現代のエレクトロニクスにおいて重要であり、信号処理、増幅、センシング、電力管理において重要な役割を果たしている。
多くのIC企業は製造をサードパーティのファウンデーションにアウトソースし、ステルスのアナログトロイの木馬のようなセキュリティリスクを生み出している。
回路の透かしを埋め込んだり、ハードウェアベースの監視を行うといった従来の検出方法は、しばしばかなりの面積と電力のオーバーヘッドを課し、全ての種類のトロイの木馬を効果的に識別するものではない。
これらの欠点に対処するため,ソフトウェア領域内で動作する大規模言語モデル(LLM)ベースのフレームワークであるSPICEDを提案する。
これは、回路網リストにおける構文上のバグやアナログトロイの木馬の検出とローカライズのためのLLM支援技術を使った最初の研究であり、明示的なトレーニングを必要とせず、領域のオーバーヘッドもゼロである。
我々のフレームワークは、LLMに異常検出規則を教えるために、チェーン・オブ・ソートと少数例を用いている。
提案手法により、評価されたアナログベンチマーク回路において、トロイの木馬に衝突したノードの同定において平均93.32%の平均トロイの木馬被覆率と平均真正の93.4%を達成する。
これらの実験結果は、アナログネットリスト内の構文的バグとトロイの木の両方の検出および位置決定におけるLLMの有効性を検証した。
関連論文リスト
- Programmable EM Sensor Array for Golden-Model Free Run-time Trojan Detection and Localization [9.889117431225309]
リアルタイムハードウェアトロイの木馬検出, 局所化, 同定を行うために, タンパーレジリエントなオンチップ磁界センサアレイを提案する。
PSAを用いて、IC上の異なる位置のセンサーから収集されたEM側チャネル測定結果を分析して、トロイの木馬をローカライズし同定することができる。
PSAは、従来の外部磁気プローブや最先端のオンチップ単コイル磁界センサよりも優れた性能を有する。
論文 参考訳(メタデータ) (2024-01-22T18:35:02Z) - Logic Locking based Trojans: A Friend Turns Foe [4.09675763028423]
多くの論理ロック技法における共通構造は、ハードウェアトロイの木(HWT)の望ましい特性を持つ
そこで我々は, Logic Locking (TroLL) に基づく新しいタイプのHWTを構築し, 最先端のATPGベースのHWT検出技術を回避する。
論文 参考訳(メタデータ) (2023-09-26T16:55:42Z) - TrojanNet: Detecting Trojans in Quantum Circuits using Machine Learning [5.444459446244819]
TrojanNetは、Trojan-inserted回路を検出して分類することで、量子回路のセキュリティを強化する新しいアプローチである。
トロイの木門型,ゲート数,挿入位置,コンパイラのバリエーションを導入し,12種類の多様なデータセットを生成する。
実験の結果、平均精度は98.80%、平均F1スコアは98.53%で、トロイの木馬挿入QAOA回路を効果的に検出し分類する。
論文 参考訳(メタデータ) (2023-06-29T05:56:05Z) - TrojLLM: A Black-box Trojan Prompt Attack on Large Language Models [29.66515518909497]
TrojLLMは、普遍的でステルス的なトリガーを生成する自動かつブラックボックスフレームワークである。
個別のプロンプト内にトロイの木馬を埋め込むことをサポートし、トリガーの攻撃の全体的な効果と精度を高める。
実世界のブラックボックスLPM APIにおけるテキストプロンプトにTrojLLMを効果的に挿入する能力を示す実験と結果を得た。
論文 参考訳(メタデータ) (2023-06-12T01:22:39Z) - Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free [126.15842954405929]
トロイの木馬攻撃はディープニューラルネットワーク(DNN)を脅かし、ほとんどのサンプルで正常に動作させるが、トリガーを付けた入力に対して操作された結果を生成する。
そこで我々は,まず,クリーンな入力において,ほぼ完全なトロイの木馬の情報のみを保存し,かつ,すでに孤立しているサブネットワークに埋め込まれたトリガを復元する,新しいトロイの木馬ネットワーク検出方式を提案する。
論文 参考訳(メタデータ) (2022-05-24T06:33:31Z) - An Adaptive Black-box Backdoor Detection Method for Deep Neural Networks [25.593824693347113]
ディープニューラルネットワーク(DNN)は、医療診断や自律運転など、さまざまな分野において前例のないパフォーマンスを示している。
それらは、ステルスシートリガーによって制御され、活性化されるニューラルトロイの木馬攻撃(NT)に対して脆弱である。
本稿では,事前訓練したトロイの木馬が展開前にトロイの木馬に検出されたかどうかを検査するロバストで適応的なトロイの木馬検出手法を提案する。
論文 参考訳(メタデータ) (2022-04-08T23:41:19Z) - Practical Detection of Trojan Neural Networks: Data-Limited and
Data-Free Cases [87.69818690239627]
本稿では,データスカース方式におけるトロイの木馬ネットワーク(トロイの木馬網)検出の問題点について検討する。
本稿では,データ限定型TrojanNet検出器(TND)を提案する。
さらに,データサンプルにアクセスせずにTrojanNetを検出できるデータフリーTNDを提案する。
論文 参考訳(メタデータ) (2020-07-31T02:00:38Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z) - Odyssey: Creation, Analysis and Detection of Trojan Models [91.13959405645959]
トロイの木馬攻撃は、一部のトレーニングサンプルにトリガーを挿入してトレーニングパイプラインを妨害し、トリガーを含むサンプルに対してのみ悪意ある動作をするようにモデルを訓練する。
既存のトロイの木馬検出器はトリガーの種類や攻撃について強い仮定をしている。
そこで本研究では,トロヤニング過程の影響を受け,本質的特性の分析に基づく検出器を提案する。
論文 参考訳(メタデータ) (2020-07-16T06:55:00Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
複数のシンボルが同時に送信されるマルチユーザマルチインプットマルチアウトプット(MIMO)設定では、正確なシンボル検出が困難である。
本稿では,DeepSICと呼ぶ反復ソフト干渉キャンセリング(SIC)アルゴリズムの,データ駆動による実装を提案する。
DeepSICは、チャネルを線形にすることなく、限られたトレーニングサンプルから共同検出を行うことを学ぶ。
論文 参考訳(メタデータ) (2020-02-08T18:31:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。