Efficient Transfer Learning Framework for Cross-Domain Click-Through Rate Prediction
- URL: http://arxiv.org/abs/2408.16238v1
- Date: Thu, 29 Aug 2024 03:34:39 GMT
- Title: Efficient Transfer Learning Framework for Cross-Domain Click-Through Rate Prediction
- Authors: Qi Liu, Xingyuan Tang, Jianqiang Huang, Xiangqian Yu, Haoran Jin, Jin Chen, Yuanhao Pu, Defu Lian, Tan Qu, Zhe Wang, Jia Cheng, Jun Lei,
- Abstract summary: Efficient Transfer Learning Framework for Cross-Domain Click-Through Rate Prediction (E-CDCTR)
Three key components: Tiny Pre-training Model (TPM), Complete Pre-training Model (CPM) and Advertisement CTR model (A-CTR)
TPM provides richer representations of user and item for both the CPM and A-CTR, effectively alleviating the problem inherent in the daily updates.
- Score: 47.7066461216227
- License:
- Abstract: Natural content and advertisement coexist in industrial recommendation systems but differ in data distribution. Concretely, traffic related to the advertisement is considerably sparser compared to that of natural content, which motivates the development of transferring knowledge from the richer source natural content domain to the sparser advertising domain. The challenges include the inefficiencies arising from the management of extensive source data and the problem of 'catastrophic forgetting' that results from the CTR model's daily updating. To this end, we propose a novel tri-level asynchronous framework, i.e., Efficient Transfer Learning Framework for Cross-Domain Click-Through Rate Prediction (E-CDCTR), to transfer comprehensive knowledge of natural content to advertisement CTR models. This framework consists of three key components: Tiny Pre-training Model ((TPM), which trains a tiny CTR model with several basic features on long-term natural data; Complete Pre-training Model (CPM), which trains a CTR model holding network structure and input features the same as target advertisement on short-term natural data; Advertisement CTR model (A-CTR), which derives its parameter initialization from CPM together with multiple historical embeddings from TPM as extra feature and then fine-tunes on advertisement data. TPM provides richer representations of user and item for both the CPM and A-CTR, effectively alleviating the forgetting problem inherent in the daily updates. CPM further enhances the advertisement model by providing knowledgeable initialization, thereby alleviating the data sparsity challenges typically encountered by advertising CTR models. Such a tri-level cross-domain transfer learning framework offers an efficient solution to address both data sparsity and `catastrophic forgetting', yielding remarkable improvements.
Related papers
- An accuracy improving method for advertising click through rate prediction based on enhanced xDeepFM model [0.0]
This paper proposes an improved CTR prediction model based on the xDeepFM architecture.
By integrating a multi-head attention mechanism, the model can simultaneously focus on different aspects of feature interactions.
Experimental results on the Criteo dataset demonstrate that the proposed model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-11-21T03:21:29Z) - ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction [45.15127775876369]
Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications.
Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features.
We propose a novel model-agnostic framework (i.e., ClickPrompt) where we incorporate CTR models to generate interaction-aware soft prompts.
arXiv Detail & Related papers (2023-10-13T16:37:53Z) - CSPM: A Contrastive Spatiotemporal Preference Model for CTR Prediction
in On-Demand Food Delivery Services [17.46228008447778]
This paper introduces Contrasttemporal representation learning (CSRL),temporal representation extractor (CSRPE), andtemporal information filter (StIF)
StIF incorporates SAR into a gating network to automatically capture important features with latenttemporal effects.
CSPM has been successfully deployed in Alibaba's online OFD platform Ele.me, resulting in a 0.88% lift in CTR, which has substantial business implications.
arXiv Detail & Related papers (2023-08-10T19:53:30Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
We propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data.
We derive two practical algorithms: masked feature prediction (RFD) and replaced feature detection (RFD)
arXiv Detail & Related papers (2023-08-03T12:55:55Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
Click-Through Rate (CTR) prediction is a pivotal task in product and content recommendation.
We propose a model that enables Dynamic Embedding Learning with Truncated Conscious Attention for CTR prediction.
arXiv Detail & Related papers (2023-05-03T12:34:45Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
We propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations.
Specifically, we develop a self-supervised task MatchedPair Detection (MPD) to exploit the vertically partitioned unlabeled data.
Our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.
arXiv Detail & Related papers (2022-05-31T17:45:30Z) - Concept Drift Adaptation for CTR Prediction in Online Advertising
Systems [6.900209851954917]
Click-through rate (CTR) prediction is a crucial task in web search, recommender systems, and online advertisement displaying.
In this paper, we propose adaptive mixture of experts (AdaMoE) to alleviate the concept drift problem by adaptive filtering in the data stream of CTR prediction.
arXiv Detail & Related papers (2022-04-01T07:43:43Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
We propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting.
In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes.
We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.
arXiv Detail & Related papers (2022-01-25T12:44:23Z) - Towards Automated Neural Interaction Discovery for Click-Through Rate
Prediction [64.03526633651218]
Click-Through Rate (CTR) prediction is one of the most important machine learning tasks in recommender systems.
We propose an automated interaction architecture discovering framework for CTR prediction named AutoCTR.
arXiv Detail & Related papers (2020-06-29T04:33:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.