Concept Drift Adaptation for CTR Prediction in Online Advertising
Systems
- URL: http://arxiv.org/abs/2204.05101v1
- Date: Fri, 1 Apr 2022 07:43:43 GMT
- Title: Concept Drift Adaptation for CTR Prediction in Online Advertising
Systems
- Authors: Congcong Liu, Yuejiang Li, Xiwei Zhao, Changping Peng, Zhangang Lin,
Jingping Shao
- Abstract summary: Click-through rate (CTR) prediction is a crucial task in web search, recommender systems, and online advertisement displaying.
In this paper, we propose adaptive mixture of experts (AdaMoE) to alleviate the concept drift problem by adaptive filtering in the data stream of CTR prediction.
- Score: 6.900209851954917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-through rate (CTR) prediction is a crucial task in web search,
recommender systems, and online advertisement displaying. In practical
application, CTR models often serve with high-speed user-generated data
streams, whose underlying distribution rapidly changing over time. The concept
drift problem inevitably exists in those streaming data, which can lead to
performance degradation due to the timeliness issue. To ensure model freshness,
incremental learning has been widely adopted in real-world production systems.
However, it is hard for the incremental update to achieve the balance of the
CTR models between the adaptability to capture the fast-changing trends and
generalization ability to retain common knowledge. In this paper, we propose
adaptive mixture of experts (AdaMoE), a new framework to alleviate the concept
drift problem by adaptive filtering in the data stream of CTR prediction. The
extensive experiments on the offline industrial dataset and online A/B tests
show that our AdaMoE significantly outperforms all incremental learning
frameworks considered.
Related papers
- Adaptive Adapter Routing for Long-Tailed Class-Incremental Learning [55.384428765798496]
New data exhibits a long-tailed distribution, such as e-commerce platform reviews.
This necessitates continuous model learning imbalanced data without forgetting.
We introduce AdaPtive Adapter RouTing (APART) as an exemplar-free solution for LTCIL.
arXiv Detail & Related papers (2024-09-11T17:52:00Z) - Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks [60.54852710216738]
We introduce a novel digital twin-assisted optimization framework, called D-REC, to ensure reliable caching in nextG wireless networks.
By incorporating reliability modules into a constrained decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints.
arXiv Detail & Related papers (2024-06-29T02:40:28Z) - CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model [32.45713037210818]
We introduce Criss-Crossed Dual-Stream Enhanced Rectified Transformer model (CCDSReFormer)
It includes three innovative modules: Enhanced Rectified Spatial Self-attention (ReSSA), Enhanced Rectified Delay Aware Self-attention (ReDASA) and Enhanced Rectified Temporal Self-attention (ReTSA)
These modules aim to lower computational needs via sparse attention, focus on local information for better traffic dynamics understanding, and merge spatial and temporal insights through a unique learning method.
arXiv Detail & Related papers (2024-03-26T14:43:57Z) - Always Strengthen Your Strengths: A Drift-Aware Incremental Learning
Framework for CTR Prediction [4.909628097144909]
Click-through rate (CTR) prediction is of great importance in recommendation systems and online advertising platforms.
Streaming data has the characteristic that the underlying distribution drifts over time and may recur.
We design a novel drift-aware incremental learning framework based on ensemble learning to address catastrophic forgetting in CTR prediction.
arXiv Detail & Related papers (2023-04-17T05:45:18Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow learning Networks (FSNet) is a holistic framework for online time-series forecasting.
FSNet balances fast adaptation to recent changes and retrieving similar old knowledge.
Our code will be made publicly available.
arXiv Detail & Related papers (2022-02-23T18:23:07Z) - Employing chunk size adaptation to overcome concept drift [2.277447144331876]
We propose a new Chunk Adaptive Restoration framework that can be adapted to any block-based data stream classification algorithm.
The proposed algorithm adjusts the data chunk size in the case of concept drift detection to minimize the impact of the change on the predictive performance of the used model.
arXiv Detail & Related papers (2021-10-25T12:36:22Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
This work aims to obtain an accurate model for the prediction of the steering angle in an automated driving system.
BO was able to identify, within a limited number of trials, a model -- namely BOST-LSTM -- which resulted, the most accurate when compared to classical end-to-end driving models.
arXiv Detail & Related papers (2021-10-22T15:25:14Z) - Switching Scheme: A Novel Approach for Handling Incremental Concept
Drift in Real-World Data Sets [0.0]
Concept drifts can severely affect the prediction performance of a machine learning system.
In this work, we analyze the effects of concept drifts in the context of a real-world data set.
We introduce the switching scheme which combines the two principles of retraining and updating of a machine learning model.
arXiv Detail & Related papers (2020-11-05T10:16:54Z) - Deep Time-Stream Framework for Click-Through Rate Prediction by Tracking
Interest Evolution [33.090918958117946]
We argue that it is necessary to consider the continuous-time information in CTR models to track user interest trend from rich historical behaviors.
We propose a novel Deep Time-Stream framework (DTS) which introduces the time information by an ordinary differential equations (ODE)
DTS continuously models the evolution of interests using a neural network, and thus is able to tackle the challenge of dynamically representing users' interests.
arXiv Detail & Related papers (2020-01-08T10:33:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.