Data-driven rainfall prediction at a regional scale: a case study with Ghana
- URL: http://arxiv.org/abs/2410.14062v2
- Date: Tue, 22 Oct 2024 17:23:30 GMT
- Title: Data-driven rainfall prediction at a regional scale: a case study with Ghana
- Authors: Indrajit Kalita, Lucia Vilallonga, Yves Atchade,
- Abstract summary: State-of-the-art numerical weather prediction (NWP) models struggle to produce skillful rainfall forecasts in tropical regions of Africa.
We develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time.
We also find that combining our data-driven model with classical NWP further improves forecast accuracy.
- Score: 4.028179670997471
- License:
- Abstract: With a warming planet, tropical regions are expected to experience the brunt of climate change, with more intense and more volatile rainfall events. Currently, state-of-the-art numerical weather prediction (NWP) models are known to struggle to produce skillful rainfall forecasts in tropical regions of Africa. There is thus a pressing need for improved rainfall forecasting in these regions. Over the last decade or so, the increased availability of large-scale meteorological datasets and the development of powerful machine learning models have opened up new opportunities for data-driven weather forecasting. Focusing on Ghana in this study, we use these tools to develop two U-Net convolutional neural network (CNN) models, to predict 24h rainfall at 12h and 30h lead-time. The models were trained using data from the ERA5 reanalysis dataset, and the GPM-IMERG dataset. A special attention was paid to interpretability. We developed a novel statistical methodology that allowed us to probe the relative importance of the meteorological variables input in our model, offering useful insights into the factors that drive precipitation in the Ghana region. Empirically, we found that our 12h lead-time model has performances that match, and in some accounts are better than the 18h lead-time forecasts produced by the ECMWF (as available in the TIGGE dataset). We also found that combining our data-driven model with classical NWP further improves forecast accuracy.
Related papers
- Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change.
We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational models.
arXiv Detail & Related papers (2024-10-11T09:09:07Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa.
This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on tropical waves (TWs) to predict daily rainfall during the July-September monsoon season.
arXiv Detail & Related papers (2024-08-29T08:36:22Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution [0.0]
This study introduces deep learning spatial model aimed at enhancing rainfall prediction accuracy on a finer scale.
To test this hypothesis, we introduce a physics informed ConvLSTM2D model to predict precipitation 6hr and 12hr ahead for Mumbai, India.
arXiv Detail & Related papers (2024-04-01T13:56:12Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.